ترغب بنشر مسار تعليمي؟ اضغط هنا

Mega parsec relativistic jets launched from an accreting supermassive blackhole in an extreme spiral galaxy

56   0   0.0 ( 0 )
 نشر من قبل Joydeep Bagchi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio galaxy phenomenon is directly connected to mass accreting, spinning supermassive black holes found in the active galactic nuclei (AGN). It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kpc scale form, and why nearly always they are launched from the nuclei of bulge dominated elliptical galaxies and not flat spirals. Here we present the discovery of giant radio source J2345-0449 (z=0.0755), a clear and extremely rare counter example where relativistic jets are ejected from a luminous and massive spiral galaxy on scale of ~1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infra-red luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 x 10^8 M_sun. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection dominated, magnetized accretion flow at low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast-spinning central black hole. Therefore, J2345-0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk -- relativistic jet coupling processes.

قيم البحث

اقرأ أيضاً

The presence of magnetic fields in galaxy clusters has been well established in recent years, and their importance for the understanding of the physical processes at work in the Intra Cluster Medium has been recognized. Halo and relic sources have be en detected in several tens clusters. A strong correlation is present between the halo and relic radio power and the X-ray luminosity. Since cluster X-Ray luminosity and mass are related, the correlation between the radio power and X-ray luminosity could derive from a physical dependence of the radio power on the cluster mass, therefore the cluster mass could be a crucial parameter in the formation of these sources. The goal of this project is to investigate the existence of non-thermal structures beyond the Mpc scale, and associated with lower density regions with respect to clusters of galaxies: galaxy filaments connecting rich clusters. We present a piece of evidence of diffuse radio emission in intergalactic filaments. Moreover, we present and discuss the detection of radio emission in galaxy groups and in faint X-Ray clusters, to analyze non-thermal properties in low density regions with physical conditions similar to galaxy filaments. We discuss how SKA1 observations will allow the investigation of this topic and the study of the presence of diffuse radio sources in low density regions. This will be a fundamental step to understand the origin and properties of cosmological magnetic fields.
53 - T. W. B. Muxlow 2010
A faint new radio source has been detected in the nuclear region of the starburst galaxy M82 using MERLIN radio observations designed to monitor the flux density evolution of the recent bright supernova SN2008iz. This new source was initially identif ied in observations made between 1-5th May 2009 but had not been present in observations made one week earlier, or in any previous observations of M82. In this paper we report the discovery of this new source and monitoring of its evolution over its first 9 months of existence. The true nature of this new source remains unclear, and we discuss whether this source may be an unusual and faint supernova, a supermassive blackhole associated with the nucleus of M82, or intriguingly the first detection of radio emission from an extragalactic microquasar.
The detection and characterization of supermassive black holes (SMBHs) in local low mass galaxies is crucial to our understanding of the origins of SMBHs. This statement assumes that low mass galaxies have had a relatively quiet cosmic history, so th at their black holes have not undergone significant growth and therefore can be treated as relics of the original SMBH seeds. While recent studies have found optical signatures of active galactic nuclei (AGNs) in a growing population of dwarf galaxies, these studies are biased against low metallicity and relatively merger-free galaxies, thus missing precisely the demographic in which to search for the relics of SMBH seeds. Here, we report the detection of the [ion{Si}{6}]1.963~$mu$m coronal line (CL), a robust indicator of an AGN in the galaxy SDSS~J160135.95+311353.7, a nearby ($z=0.031$) low metallicity galaxy with a stellar mass approximately an order of magnitude lower than the LMC ($M_*approx10^{8.56}$~M$_odot$) and no optical evidence for an AGN. The AGN bolometric luminosity implied by the CL detection is $approx10^{42}$~erg~s$^{-1}$, precisely what is predicted from its near-infrared continuum emission based on well-studied AGNs. Our results are consistent with a black hole of mass $approx~10^5$~M$_odot$, in line with expectations based on its stellar mass. This is the first time a near-infrared CL has been detected in a low mass, low metallicity galaxy with no optical evidence for AGN activity, providing confirmation of the utility of infrared CLs in finding AGNs in low mass galaxies when optical diagnostics fail. These observations highlight a powerful avenue of investigation to hunt for low mass black holes in the JWST era.
We have discovered an optically rich galaxy cluster at z=1.7089 with star formation occurring in close proximity to the central galaxy. The system, SpARCS104922.6+564032.5, was detected within the Spitzer Adaptation of the red-sequence Cluster Survey , (SpARCS), and confirmed through Keck-MOSFIRE spectroscopy. The rest-frame optical richness of Ngal(500kpc) = 30+/-8 implies a total halo mass, within 500kpc, of ~3.8+/-1.2 x 10^14 Msun, comparable to other clusters at or above this redshift. There is a wealth of ancillary data available, including Canada-France-Hawaii Telescope optical, UKIRT-K, Spitzer-IRAC/MIPS, and Herschel-SPIRE. This work adds submillimeter imaging with the SCUBA2 camera on the James Clerk Maxwell Telescope and near-infrared imaging with the Hubble Space Telescope (HST). The mid/far-infrared (M/FIR) data detect an Ultra-luminous Infrared Galaxy spatially coincident with the central galaxy, with LIR = 6.2+/-0.9 x 10^12 Lsun. The detection of polycyclic aromatic hydrocarbons (PAHs) at z=1.7 in a Spitzer-IRS spectrum of the source implies the FIR luminosity is dominated by star formation (an Active Galactic Nucleus contribution of 20%) with a rate of ~860+/-30 Msun/yr. The optical source corresponding to the IR emission is likely a chain of of > 10 individual clumps arranged as beads on a string over a linear scale of 66 kpc. Its morphology and proximity to the Brightest Cluster Galaxy imply a gas-rich interaction at the center of the cluster triggered the star formation. This system indicates that wet mergers may be an important process in forming the stellar mass of BCGs at early times.
The ngVLA will facilitate deep surveys capable of detecting the faint and compact signatures of accreting supermassive black holes (SMBHs) with masses below one million solar-masses hosted by low-mass ($< 10^9$ solar-masses) galaxies. This will provi de important new insights on both the origins of supermassive black holes and the possible impact of active galactic nucleus-driven feedback in a currently unexplored mass regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا