ﻻ يوجد ملخص باللغة العربية
Electron supercollimation, in which a wavepacket is guided to move undistorted along a selected direction, is a highly desirable property that has yet been realized experimentally. Disorder in general is expected to inhibit supercollimation. Here, we report a counter-intuitive phenomenon of electron supercollimation by disorder in graphene and related Dirac fermion materials. We show that one can use one-dimensional disorder potentials to control electron wavepacket transport. This is distinct from known systems where an electron wavepacket would be further spread by disorder and hindered in the potential fluctuating direction. The predicted phenomenon has significant implications in the understanding and applications of electron transport in Dirac fermion materials.
Three dimensionally curved graphene with a wide range of curvature radii from 25 nm to 1000 nm demonstrates that nano-scale curvature is a new degree of freedom to tune the transport properties of graphene by manipulating 2D electron kinetics on 3D curved surfaces.
Exciton problem is solved in the two-dimensional Dirac model with allowance for strong electron-hole attraction. The exciton binding energy is assumed smaller than but comparable to the band gap. The exciton wavefunction is found in the momentum spac
After the first unequivocal demonstration of spin transport in graphene (Tombros et al., 2007), surprisingly at room temperature, it was quickly realized that this novel material was relevant for both fundamental spintronics and future applications.
Transverse electric (TE) modes can not propagate through the conducting solids. This is because the continuum of particle-hole excitations of conductors contaminates with the TE mode and dampes it out. But in solids hosting tilted Dirac cone (TDC) th
Using a tight-binding model, we study a line defect in graphene where a bulk energy gap is opened by sublattice symmetry breaking. It is found that sublattice symmetry breaking may induce many configurations that correspond to different band spectra.