ﻻ يوجد ملخص باللغة العربية
A near-factor of a finite simple graph $G$ is a matching that saturates all vertices except one. A graph $G$ is said to be near-factor-critical if the deletion of any vertex from $G$ results in a subgraph that has a near-factor. We prove that a connected graph $G$ is near-factor-critical if and only if it has a perfect matching. We also characterize disconnected near-factor-critical graphs.
Let $Oct_{1}^{+}$ and $Oct_{2}^{+}$ be the planar and non-planar graphs that obtained from the Octahedron by 3-splitting a vertex respectively. For $Oct_{1}^{+}$, we prove that a 4-connected graph is $Oct_{1}^{+}$-free if and only if it is $C_{6}^{2}
Motivated by the conjecture of Hartsfield and Ringel on antimagic labelings of undirected graphs, Hefetz, M{u}tze, and Schwartz initiated the study of antimagic labelings of digraphs in 2010. Very recently, it has been conjectured in [Antimagic orien
A emph{$k$--bisection} of a bridgeless cubic graph $G$ is a $2$--colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes have order at most $k$
Balogh, Csaba, Jing and Pluhar recently determined the minimum degree threshold that ensures a $2$-coloured graph $G$ contains a Hamilton cycle of significant colour bias (i.e., a Hamilton cycle that contains significantly more than half of its edges
A bridgeless graph $G$ is called $3$-flow-critical if it does not admit a nowhere-zero $3$-flow, but $G/e$ has for any $ein E(G)$. Tuttes $3$-flow conjecture can be equivalently stated as that every $3$-flow-critical graph contains a vertex of degree