ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson coupling through one-dimensional ballistic channel in semiconductor-superconductor hybrid quantum point contacts

138   0   0.0 ( 0 )
 نشر من قبل Hiroshi Irie
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a superconducting quantum point contact made of a narrow In$_{0.75}% $Ga$_{0.25}$As channel with Nb proximity electrodes. The narrow channel is formed in a gate-fitted constriction of InGaAs/InAlAs/InP heterostructure hosting a two-dimensional electron gas. When the channel opening is varied with the gate, the Josephson critical current exhibits a discretized variation that arises from the quantization of the transverse momentum in the channel. The quantization of Josephson critical current persists down to the single-channel regime, providing an unambiguous demonstration of a semiconductor--superconductor hybrid Josephson junction involving only a single ballistic channel.

قيم البحث

اقرأ أيضاً

Linear and non-linear transport properties through an atomic-size point contact based on oxides two-dimensional electron gas is examined using the tight-binding method and the $mathbf{kcdot p}$ approach. The ballistic transport is analyzed in contact s realized at the (001) interface between band insulators $LaAlO_3$ and $SrTiO_3$ by using the Landauer-Buttiker method for many sub-bands derived from three Ti 3d orbitals ($d_{yz}$, $d_{zx}$ and $d_{xy}$) in the presence of an out-of-plane magnetic field. We focus especially on the role played by the atomic spin-orbit coupling and the inversion symmetry breaking term pointing out three transport regimes: the first, at low energies, involving the first $d_{xy}$-like sub-bands, where the conductance quantization is robust; a second one, at intermediate energies, entailing further $d_{xy}$-like sub-bands, where the sub-band splitting induced by the magnetic field is quenched; the third one, where the mixing between light $d_{xy}$-like, heavy $d_{yz}$-like and $d_{zx}$-like sub-bands is so strong that the conductance plateaus turn out to be very narrow. Very good agreement is found with recent experiments exploring the transport properties at low energies.
The realization of a topological qubit calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls that offers subst antial advances in device quality and reproducibility. It allows for the implementation of novel quantum devices and ultimately topological qubits while eliminating many fabrication steps such as lithography and etching. This is critical to preserve the integrity and homogeneity of the fragile hybrid interfaces. The approach simplifies the reproducible fabrication of devices with a hard induced superconducting gap and ballistic normal-/superconductor junctions. Large gate-tunable supercurrents and high-order multiple Andreev reflections manifest the exceptional coherence of the resulting nanowire Josephson junctions. Our approach enables, in particular, the realization of 3-terminal devices, where zero-bias conductance peaks emerge in a magnetic field concurrently at both boundaries of the one-dimensional hybrids.
123 - M. Seo , C. Hong , S. -Y. Lee 2014
Multi-valued logic gates, which can handle quaternary numbers as inputs, are developed by exploiting the ballistic transport properties of quantum point contacts in series. The principle of a logic gate that finds the minimum of two quaternary number inputs is demonstrated. The device is scalable to allow multiple inputs, which makes it possible to find the minimum of multiple inputs in a single gate operation. Also, the principle of a half-adder for quaternary number inputs is demonstrated. First, an adder that adds up two quaternary numbers and outputs the sum of inputs is demonstrated. Second, a device to express the sum of the adder into two quaternary digits [Carry (first digit) and Sum (second digit)] is demonstrated. All the logic gates presented in this paper can in principle be extended to allow decimal number inputs with high quality QPCs.
The magneto-electrostatic tailoring of the supercurrent in quantum point contact ballistic Josephson junctions is demonstrated. An etched InAs-based heterostructure is laterally contacted to superconducting niobium leads and the existence of two etch ed side gates permits, in combination with the application of a perpendicular magnetic field, to modify continuously the magnetic interference pattern by depleting the weak link. For wider junctions the supercurrent presents a Fraunhofer-like interference pattern with periodicity h/2e whereas by shrinking electrostatically the weak link, the periodicity evolves continuously to a monotonic decay. These devices represent novel tunable structures that might lead to the study of the elusive Majorana fermions.
We study nonlinear transport and non-equilibrium current noise in quasi-classical point contacts (PCs) defined in a low-density high-quality two-dimensional electron system in GaAs. At not too high bias voltages $V$ across the PC the noise temperatur e is determined by a Joule heat power and almost independent on the PC resistance that can be associated with a self-heating of the electronic system. This commonly accepted scenario breaks down at increasing $V$, where we observe extra noise accompanied by a strong decrease of the PCs differential resistance. The spectral density of the extra noise is roughly proportional to the nonlinear current contribution in the PC $delta Sapprox2F^*|edelta I|sim V^2$ with the effective Fano factor $F^*<1$, indicating that a random scattering process is involved. A small perpendicular magnetic field is found to suppress both $delta I$ and $delta S$. Our observations are consistent with a concept of a drag-like mechanism of the nonlinear transport mediated by electron-electron scattering in the leads of quasi-classical PCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا