ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective interaction and condensation of dipolaritons in coupled quantum wells

104   0   0.0 ( 0 )
 نشر من قبل Tim Byrnes
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dipolaritons are a three-way superposition of photon, a direct exciton, and an indirect exciton that are formed in coupled quantum well microcavities. As is the case with exciton-polaritons, dipolaritons have a self-interaction due to direct and exchange effects of the underlying electrons and holes. Here we present a theoretical description of dipolaritons and derive simple formulas for their basic parameters. In particular, we derive the effective dipolariton-dipolariton interaction taking into account of exchange effects between the excitons. We obtain a simple relation to describe the effective interaction at low densities. We find that dipolaritons should condense under suitable conditions, described by a dissipative Gross-Pitaevskii equation. While the parameters for condensation are promising, we find that the level of tunability of the interactions is limited.



قيم البحث

اقرأ أيضاً

We show that with a system of electrically-gated wide quantum wells embedded inside a simple dielectric waveguide structure, it is possible to excite, control, and observe waveguided exciton polaritons that carry an electric dipole moment. We demonst rate that the energy of the propagating dipolariton can be easily tuned using local electrical gates, that their excitation and extraction can be easily done using simple evaporated metal gratings, and that the dipolar interactions between polaritons and between polaritons and excitons can also be controlled by the applied electric fields. This system of gated flying dipolaritons thus exhibit the ability to locally control both the single polariton properties as well as the interactions between polaritons, which should open up opportunities for constructing complex polaritonic circuits and for studying strongly-interacting, correlated polariton gases.
We investigate the transport of dipolar indirect excitons along the growth plane of polar (Al,Ga)N/GaN quantum well structures by means of spatially- and time-resolved photoluminescence spectroscopy. The transport in these strongly disordered quantum wells is activated by dipole-dipole repulsion. The latter induces an emission blue shift that increases linearly with exciton density, whereas the radiative recombination rate increases exponentially. Under continuous, localized excitation, we measure a continuous red shift of the emission, as excitons propagate away from the excitation spot. This shift corresponds to a steady-state gradient of exciton density, measured over several tens of micrometers. Time-resolved micro-photoluminescence experiments provide information on the dynamics of recombination and transport of dipolar excitons. We account for the ensemble of experimental results by solving the nonlinear drift-diffusion equation. Quantitative analysis suggests that in such structures, exciton propagation on the scale of 10 to 20 microns is mainly driven by diffusion, rather than by drift, due to the strong disorder and the presence of nonradiative defects. Secondary exciton creation, most probably by the intense higher-energy luminescence, guided along the sample plane, is shown to contribute to the exciton emission pattern on the scale up to 100 microns. The exciton propagation length is strongly temperature dependent, the emission being quenched beyond a critical distance governed by nonradiative recombination.
Strong light matter coupling between excitons and microcavity photons, as described in the framework of cavity quantum electrodynamics, leads to the hybridization of light and matter excitations. The regime of collective strong coupling arises, when various excitations from different host media are strongly coupled to the same optical resonance. This leads to a well-controllable admixture of various matter components in three hybrid polariton modes. Here, we study a cavity device with four embedded GaAs quantum wells hosting excitons that are spectrally matched to the A-valley exciton resonance of a MoSe2 monolayer. The formation of hybrid polariton modes is evidenced in momentum resolved photoluminescence and reflectivity studies. We describe the energy and k-vector distribution of exciton-polaritons along the hybrid modes by a thermodynamic model, which yields a very good agreement with the experiment.
While spin-orbit coupling (SOC), an essential mechanism underlying quantum phenomena from the spin Hall effect to topological insulators, has been widely studied in well-isolated Hermitian systems, much less is known when the dissipation plays a majo r role in spin-orbit-coupled quantum systems. Here, we realize dissipative spin-orbit-coupled bands filled with ultracold fermions, and observe a parity-time ($mathcal{PT}$) symmetry-breaking transition as a result of the competition between SOC and dissipation. Tunable dissipation, introduced by state-selective atom loss, enables the energy gap, opened by SOC, to be engineered and closed at the critical dissipation value, the so-called exceptional point (EP). The realized EP of the non-Hermitian band structure exhibits chiral response when the quantum state changes near the EP. This topological feature enables us to tune SOC and dissipation dynamically in the parameter space, and observe the state evolution is direction-dependent near the EP, revealing topologically robust spin transfer between different quantum states when the quantum state encircles the EP. This topological control of quantum states for non-Hermitian fermions provides new methods of quantum control, and also sets the stage for exploring non-Hermitian topological states with SOC.
Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity is a macroscopically populated coherent quantum state subject to concurrent pumping and decay. Debates about the fundamental nature of the condensed phase in this open quan tum system still persist. Here, we gain a new insight into the spontaneous condensation process by imaging long-lifetime exciton polaritons in a high-quality inorganic microcavity in the single-shot optical excitation regime, without averaging over multiple condensate realisations. In this highly non-stationary regime, a condensate is strongly influenced by the `hot incoherent reservoir, and reservoir depletion is critical for the transition to the ground energy and momentum state. Condensates formed by more photonic exciton polaritons exhibit dramatic reservoir-induced density filamentation and shot-to-shot fluctuations. In contrast, condensates of more excitonic quasiparticles display smooth density and are second-order coherent. Our observations show that the single-shot measurements offer a unique opportunity to study formation of macroscopic phase coherence during a quantum phase transition in a solid state system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا