ترغب بنشر مسار تعليمي؟ اضغط هنا

Muon spin rotation and relaxation in Pr$_{1-x}$Nd$_x$Os$_4$Sb$_{12}$: Magnetic and superconducting ground states

124   0   0.0 ( 0 )
 نشر من قبل Douglas E. MacLaughlin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Muon spin rotation and relaxation ($mu$SR) experiments have been carried out to characterize magnetic and superconducting ground states in the Pr$_{1-x}$Nd$_x$Os$_4$Sb$_{12}$ alloy series. In the ferromagnetic end compound NdOs$_4$Sb$_{12}$ the spontaneous local field at positive-muon ($mu^+$) sites below the ordering temperature $T_C$ is greater than expected from dipolar coupling to ferromagnetically aligned Nd$^{3+}$ moments, indicating an additional indirect RKKY-like transferred hyperfine mechanism. For 0.45 $le x le$ 0.75, $mu^+$ spin relaxation rates in zero and weak longitudinal applied fields indicate that static fields at $mu^+$ sites below $T_C$ are reduced and strongly disordered. We argue this is unlikely to be due to reduction of Nd$^{3+}$ moments, and speculate that the Nd$^{3+}$-$mu^+$ interaction is suppressed and disordered by Pr doping. In an $x$ = 0.25 sample, which is superconducting below $T_c$ = 1.3 K, there is no sign of spin freezing (static Nd$^{3+}$ magnetism), ordered or disordered, down to 25 mK. Dynamic $mu^+$ spin relaxation is strong, indicating significant Nd-moment fluctuations. The $mu^+$ diamagnetic frequency shift and spin relaxation in the superconducting vortex-lattice phase decrease slowly below $T_c$, suggesting pair breaking and/or possible modification of Fermi-liquid renormalization by Nd spin fluctuations. For 0.25 $le x le$ 0.75, the $mu$SR data provide evidence against phase separation; superconductivity and Nd$^{3+}$ magnetism coexist on the atomic scale.



قيم البحث

اقرأ أيضاً

Positive-muon ($mu^+$) Knight shifts have been measured in the paramagnetic states of Pr$_{1-x}$Nd$_x$Os$_4$Sb$_{12}$ alloys, where $x =$ 0, 0.25, 0.45, 0.50, 0.55, 0.75, and 1.00. In Pr-substituted NdOs$_4$Sb$_{12}$ ($x le$ 0.75), but not in NdOs$_4 $Sb$_{12}$, Clogston-Jaccarino plots of $mu^+$ Knight shift~$K$ versus magnetic susceptibility~$chi$ exhibit an anomalous saturation of $K(chi)$ at $sim-$0.5% for large susceptibilities (low temperatures), indicating a reduction of the coupling strength between $mu^+$ spins and $4f$ paramagnetism for temperatures $lesssim$ 15~K. We speculate that itinerant Pr$^{3+}$ quadrupolar excitations, invoked to mediate the superconducting Cooper-pair interaction, might modify the $mu^+$-$4f$ ion indirect spin-spin interaction.
The Pr-rich end of the alloy series Pr$_{1-x}$Nd$_x$Os$_4$Sb$_{12}$ has been studied using muon spin rotation and relaxation. The end compound PrOs$_4$Sb$_{12}$ is an unconventional heavy-fermion superconductor, which exhibits a spontaneous magnetic field in the superconducting phase associated with broken time-reversal symmetry. No spontaneous field is observed in the Nd-doped alloys for x $>$ 0.05. The superfluid density is insensitive to Nd concentration, and no Nd$^{3+}$ static magnetism is found down to the lowest temperatures of measurement. Together with the slow suppression of the superconducting transition temperature with Nd doping, these results suggest anomalously weak coupling between Nd spins and conduction-band states.
Superconductivity, magnetic order, and quadrupolar order have been investigated in the filled skutterudite system Pr$_{1-x}$Nd$_{x}$Os$_4$Sb$_{12}$ as a function of composition $x$ in magnetic fields up to 9 tesla and at temperatures between 50 mK an d 10 K. Electrical resistivity measurements indicate that the high field ordered phase (HFOP), which has been identified with antiferroquadruoplar order, persists to $x$ $sim$ 0.5. The superconducting critical temperature $T_c$ of PrOs$_4$Sb$_{12}$ is depressed linearly with Nd concentration to $x$ $sim$ 0.55, whereas the Curie temperature $T_{FM}$ of NdOs$_4$Sb$_{12}$ is depressed linearly with Pr composition to ($1-x$) $sim$ 0.45. In the superconducting region, the upper critical field $H_{c2}(x,0)$ is depressed quadratically with $x$ in the range 0 $<$ $x$ $lesssim$ 0.3, exhibits a kink at $x$ $approx$ 0.3, and then decreases linearly with $x$ in the range 0.3 $lesssim$ $x$ $lesssim$ 0.6. The behavior of $H_{c2}(x,0)$ appears to be due to pair breaking caused by the applied magnetic field and the exhange field associated with the polarization of the Nd magnetic moments, in the superconducting state. From magnetic susceptibility measurements, the correlations between the Nd moments in the superconducting state appear to change from ferromagnetic in the range 0.3 $lesssim$ $x$ $lesssim$ 0.6 to antiferromagnetic in the range 0 $<$ $x$ $lesssim$ 0.3. Specific heat measurements on a sample with $x$ $=$ 0.45 indicate that magnetic order occurs in the superconducting state, as is also inferred from the depression of $H_{c2}(x,0)$ with $x$.
We report measurements of the magnetic penetration depth $lambda$ in single crystals of Pr(Os$_{1-x}$Ru$_{x}$)$_{4}$Sb$_{12}$ down to 0.1 K. Both $lambda$ and superfluid density $rho_{s}$ exhibit an exponential behavior for the $x$$geq$0.4 samples, g oing from weak ($x$=0.4,0.6), to moderate, coupling ($x$=0.8). For the $x$$leq$0.2 samples, both $lambda$ and $rho_{s}$ vary as $T^{2}$ at low temperatures, but $rho_{s}$ is s-wave-like at intermediate to high temperatures. Our data are consistent with a three-phase scenario, where a fully-gapped phase at $T_{c1}$ undergoes two transitions: first to an unconventional phase at $T_{c2}$$lesssim$$T_{c1}$, then to a nodal low-$T$ phase at $T_{c3}$$<$$T_{c2}$, for small values of $x$.
71 - C.R. Rotundu , K. Ingersent , 2006
Resistivity measurements were performed on Pr$_{1-x}$La$_x$Os$_4$Sb$_{12}$ single crystals at temperatures down to 20 mK and in fields up to 18 T. The results for dilute-Pr samples ($x=0.3$ and 0.67) are consistent with model calculations performed a ssuming a singlet crystalline-electric-field (CEF) ground state. The residual resistivity of these crystals features a smeared step centered around 9 T, the predicted crossing field for the lowest CEF levels. The CEF contribution to the magnetoresistance has a weaker-than-calculated dependence on the field direction, suggesting that interactions omitted from the CEF model lead to avoided crossing in the effective levels of the Pr$^{3+}$ ion. The dome-shaped magnetoresistance observed for $x = 0$ and 0.05 cannot be reproduced by the CEF model, and likely results from fluctuations in the field-induced antiferroquadrupolar phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا