ترغب بنشر مسار تعليمي؟ اضغط هنا

String theoretic QCD axions in the light of PLANCK and BICEP2

113   0   0.0 ( 0 )
 نشر من قبل Kwang Sik Jeong
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on isocurvature density perturbations. A more interesting and still viable possibility is that the string theoretic QCD axion is charged under an anomalous U(1)_A gauge symmetry. In such case, the axion decay constant can be much lower than the GUT scale if moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and U(1)_A-charged matter fields get a vacuum value far below the GUT scale due to a tachyonic SUSY breaking scalar mass. We examine the symmetry breaking pattern of such models during the inflationary epoch with the Hubble expansion rate 10^{14} GeV, and identify the range of the QCD axion decay constant, as well as the corresponding relic axion abundance, consistent with known cosmological constraints. In addition to the case that the PQ symmetry is restored during inflation, there are other viable scenarios, including that the PQ symmetry is broken during inflation at high scales around 10^{16}-10^{17} GeV due to a large Hubble-induced tachyonic scalar mass from the U(1)_A D-term, while the present axion scale is in the range 10^{9}-5times 10^{13} GeV, where the present value larger than 10^{12} GeV requires a fine-tuning of the axion misalignment angle. We also discuss the implications of our results for the size of SUSY breaking soft masses.



قيم البحث

اقرأ أيضاً

We construct a model of quintessence in string theory based on the idea of axion monodromy as discussed by McAllister, Silverstein and Westphal arXiv:0808.0706. In the model, the quintessence field is an axion whose shift symmetry is broken by the pr esence of 5-branes which are placed in highly warped throats. This gives rise to a potential for the axion field which is slowly varying, even after incorporating the effects of moduli stabilization and supersymmetry breaking. We find that the resulting time dependence in the equation of state of Dark Energy is potentially detectable, depending on the initial conditions. The model has many very light extra particles which live in the highly warped throats, but these are hard to detect. A signal in the rotation of the CMB polarization can also possibly arise.
We briefly summarize the impact of the recent Planck measurements for string inflationary models, and outline what might be expected to be learned in the near future from the expected improvement in sensitivity to the primordial tensor-to-scalar rati o. We comment on whether these models provide sufficient added value to compensate for their complexity, and ask how they fare in the face of the new constraints on non-gaussianity and dark radiation. We argue that as a group the predictions made before Planck agree well with what has been seen, and draw conclusions from this about what is likely to mean as sensitivity to primordial gravitational waves improves.
The large tensor spectrum recently observed by the BICEP2 Collaboration requires a super-Planckian field variation of the inflaton in the single-field inflationary scenario. The required slow-roll parameter epsilon approx 0.01 would restrict the e-fo lding number to around 7 in (sub-)Planckian inflationary models. To overcome such problems, we consider a two-field scenario based on the natural assisted supersymmetric (SUSY) hybrid model (natural SUSY hybrid inflation [1]), which combines the SUSY hybrid and the natural inflation models. The axionic inflaton field from the natural inflation sector can admit the right values for the tensor spectrum as well as a spectral index of 0.96 with a decay constant smaller than the Planck scale, f lesssim M_P. On the other hand, the vacuum energy of 2 x 10^{16} GeV with 50 e-folds is provided by the inflaton coming from the SUSY hybrid sector, avoiding the eta problem. These are achieved by introducing both the U(1)_R and a shift symmetry, and employing the minimal Kahler potential.
88 - Nick E. Mavromatos 2021
I review a string-inspired cosmological model with gravitational anomalies in its early epochs, which is based on fields from the (bosonic) massless gravitational multiplet of strings, in particular gravitons and Kalb Ramond (KR), string-model indepe ndent, axions (the dilaton is assumed constant). I show how condensation of primordial gravitational waves, which are generared at the very early eras immediately after the big bang, can lead to inflation of the so called running vacuum model (RVM) type, without external inflatons. The role of the slow-roll field is played by the KR axion, but it does not drive inflation. The non-linearities in the anomaly terms do. Chiral fermionic matter excitations appear at the end of this RVM inflation, as a result of the decay of the RVM vacuum, and are held responsible for the cancellation of the primordial gravitational anomalies. Chiral anomalies, however, survive in the post-inflationary epochs, and can lead to the generation of a non perturbative mass for the KR axion, which could thus play the role of dark matter in this Universe. As a result of the condensed gravitational anomaly, there is a Lorentz-invariance violating KR axion background, which remains undiluted during the RVM inflation, and can lead to baryogenesis through leptogenesis in the radiation era, in models with sterile right-handed neutrinos. I also discuss the phenomenology of the model in the modern era, paying particular attention to linking it with a version of RVM, called type II RVM, which arguably can alleviate observed tensions in the current-epoch cosmological data.
63 - Jihn E. Kim 2021
We discuss the energy scales of the explicit breaking terms of the global symmetries USW~ needed for the quinessential axion (QA) and the ultra-light axion (ULA). The appropriate scale of QA is about $10^{8}$ GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا