ﻻ يوجد ملخص باللغة العربية
A new goodness-of-fit test for normality in high-dimension (and Reproducing Kernel Hilbert Space) is proposed. It shares common ideas with the Maximum Mean Discrepancy (MMD) it outperforms both in terms of computation time and applicability to a wider range of data. Theoretical results are derived for the Type-I and Type-II errors. They guarantee the control of Type-I error at prescribed level and an exponentially fast decrease of the Type-II error. Synthetic and real data also illustrate the practical improvement allowed by our test compared with other leading approaches in high-dimensional settings.
We propose a new one-sample test for normality in a Reproducing Kernel Hilbert Space (RKHS). Namely, we test the null-hypothesis of belonging to a given family of Gaussian distributions. Hence our procedure may be applied either to test data for norm
We derive asymptotic normality of kernel type deconvolution estimators of the density, the distribution function at a fixed point, and of the probability of an interval. We consider the so called super smooth case where the characteristic function of
In this paper, a novel Bayesian nonparametric test for assessing multivariate normal models is presented. While there are extensive frequentist and graphical methods for testing multivariate normality, it is challenging to find Bayesian counterparts.
The paper discusses the estimation of a continuous density function of the target random field $X_{bf{i}}$, $bf{i}in mathbb {Z}^N$ which is contaminated by measurement errors. In particular, the observed random field $Y_{bf{i}}$, $bf{i}in mathbb {Z}^
Multivariate linear regressions are widely used statistical tools in many applications to model the associations between multiple related responses and a set of predictors. To infer such associations, it is often of interest to test the structure of