ترغب بنشر مسار تعليمي؟ اضغط هنا

Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks

210   0   0.0 ( 0 )
 نشر من قبل Omaira Gonzalez Martin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) Many classes of active galactic nuclei (AGN) have been defined entirely throughout optical wavelengths while the X-ray spectra have been very useful to investigate their inner regions. However, optical and X-ray results show many discrepancies that have not been fully understood yet. The aim of this paper is to study the synapses between the X-ray and optical classifications. For the first time, the new EFLUXER task allowed us to analyse broad band X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB), transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2). The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components. We suggest that this is related to a large degree of obscuration at X-rays. The S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN), and SB classes have similar average X-ray spectra within each class, but these average spectra can be distinguished from class to class. The S2 (L1.8) class is linked to the S1.8 (S1) class with larger SB-like component than the S1.8 (S1) class. The L2, T2, and SB-AGN classes conform a class in the X-rays similar to the S2 class albeit with larger fractions of SB-like component. This SB-like component is the contribution of the star-formation in the host galaxy, which is large when the AGN is weak. An AGN-like component seems to be present in the vast majority of the ELN, attending to the non-negligible fraction of S1-like or S1.8-like component. This trained ANN could be used to infer optical properties from X-ray spectra in surveys like eRosita.



قيم البحث

اقرأ أيضاً

X-ray variation is a ubiquitous feature of active galactic nuclei (AGNs), however, its origin is not well understood. In this paper, we show that the X-ray flux variations in some AGNs, and correspondingly the power spectral densities (PSDs) of the v ariations, may be interpreted as being caused by absorptions of eclipsing clouds or clumps in the broad line region (BLR) and the dusty torus. By performing Monte-Carlo simulations for a number of plausible cloud models, we systematically investigate the statistics of the X-ray variations resulting from the cloud eclipsing and the PSDs of the variations. For these models, we show that the number of eclipsing events can be significant and the absorption column densities due to those eclipsing clouds can be in the range from 10^{21} to 10^{24} cm^{-2}, leading to significant X-ray variations. We find that the PSDs obtained from the mock observations for the X-ray flux and the absorption column density resulting from these models can be described by a broken double power law, similar to those directly measured from observations of some AGNs. The shape of the PSDs depend strongly on the kinematic structures and the intrinsic properties of the clouds in AGNs. We demonstrate that the X-ray eclipsing model can naturally lead to a strong correlation between the break frequencies (and correspondingly the break timescales) of the PSDs and the masses of the massive black holes (MBHs) in the model AGNs, which can be well consistent with the one obtained from observations. Future studies of the PSDs of the AGN X-ray (and possibly also the optical-UV) flux and column density variations may provide a powerful tool to constrain the structure of the BLR and the torus and to estimate the MBH masses in AGNs.
Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v~0.1-0.3c), highly-ionized (mainly visible in FeXXV and FeXXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.
We present X-ray bolometric correction factors, $kappa_{Bol}$ ($equiv L_{Bol}/L_X$), for Compton-thick (CT) active galactic nuclei (AGN) with the aim of testing AGN torus models, probing orientation effects, and estimating the bolometric output of th e most obscured AGN. We adopt bolometric luminosities, $L_{Bol}$, from literature infrared (IR) torus modeling and compile published intrinsic 2--10 keV X-ray luminosities, $L_{X}$, from X-ray torus modeling of NuSTAR data. Our sample consists of 10 local CT AGN where both of these estimates are available. We test for systematic differences in $kappa_{Bol}$ values produced when using two widely used IR torus models and two widely used X-ray torus models, finding consistency within the uncertainties. We find that the mean $kappa_{Bol}$ of our sample in the range $L_{Bol}approx10^{42}-10^{45}$ erg/s is log$_{10}kappa_{Bol}=1.44pm0.12$ with an intrinsic scatter of $sim0.2$ dex, and that our derived $kappa_{Bol}$ values are consistent with previously established relationships between $kappa_{Bol}$ and $L_{Bol}$ and $kappa_{Bol}$ and Eddington ratio. We investigate if $kappa_{Bol}$ is dependent on $N_H$ by comparing our results on CT AGN to published results on less-obscured AGN, finding no significant dependence. Since many of our sample are megamaser AGN, known to be viewed edge-on, and furthermore under the assumptions of AGN unification whereby unobscured AGN are viewed face-on, our result implies that the X-ray emitting corona is not strongly anisotropic. Finally, we present $kappa_{Bol}$ values for CT AGN identified in X-ray surveys as a function of their observed $L_X$, where an estimate of their intrinsic $L_{X}$ is not available, and redshift, useful for estimating the bolometric output of the most obscured AGN across cosmic time.
We report estimates of the X-ray coronal size of active galactic nuclei in the lamppost geometry. In this commonly adopted scenario, the corona is assumed for simplicity to be a point-like X-ray source located on the axis of the accretion disc. Howev er, the corona must intercept a number of optical/UV seed photons from the disc consistent with the observed X-ray flux, which constrains its size. We employ a relativistic ray-tracing code, originally developed by Dovv{c}iak & Done (2016), that calculates the size of a Comptonizing lamppost corona illuminated by a standard thin disc. We assume that the disc extends down to the innermost stable circular orbit of a non-spinning or a maximally spinning black hole. We apply this method to a sample of 20 Seyfert 1 galaxies, using simultaneous optical/UV and X-ray archival data from XMM-Newton. At least for the sources accreting below the Eddington limit, we find that a Comptonizing lamppost corona can generally exist, but with constraints on its size and height above the event horizon of the black hole depending on the spin. For a maximally spinning black hole, a solution can almost always be found at any height, while for a non-spinning black hole the height must generally be higher than 5 gravitational radii. This is because, for a given luminosity, a higher spin implies more seed photons illuminating the corona due to a larger and hotter inner disc area. The maximal spin solution is favored, as it predicts an X-ray photon index in better agreement with the observations.
Accreting supermassive black holes (SMBHs), also known as active galactic nuclei (AGN), are generally surrounded by large amounts of gas and dust. This surrounding material reprocesses the primary X-ray emission produced close to the SMBH and gives r ise to several components in the broadband X-ray spectra of AGN, including a power-law possibly associated with Thomson-scattered radiation. In this work, we study the properties of this scattered component for a sample of 386 hard-X-ray-selected, nearby ($z sim 0.03$) obscured AGN from the 70-month Swift/BAT catalog. We investigate how the fraction of Thomson-scattered radiation correlates with different physical properties of AGN, such as line-of-sight column density, X-ray luminosity, black hole mass, and Eddington ratio. We find a significant negative correlation between the scattering fraction and the column density. Based on a large number of spectral simulations, we exclude the possibility that this anti-correlation is due to degeneracies between the parameters. The negative correlation also persists when considering different ranges of luminosity, black hole mass, and Eddington ratio. We discuss how this correlation might be either due to the angle dependence of the Thomson cross-section or to more obscured sources having a higher covering factor of the torus. We also find a positive correlation between the scattering fraction and the ratio of [OIII] $lambda$5007 to X-ray luminosity. This result is consistent with previous studies and suggests that the Thomson-scattered component is associated with the narrow-line region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا