ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous breaking of time reversal symmetry in strongly interacting two dimensional electron layers in silicon and germanium

102   0   0.0 ( 0 )
 نشر من قبل Saquib Shamim
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experimental evidence of a remarkable spontaneous time reversal symmetry breaking in two dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P $delta-$layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two dimensional electrons are confined to narrow half-filled impurity bands.



قيم البحث

اقرأ أيضاً

350 - Igor N. Karnaukhov 2016
We study the behavior of spinless fermions in superconducting state, in which the phases of the superconducting order parameter depend on the direction of the link. We find that the energy of the superconductor depends on the phase differences of the superconducting order parameter. The solutions for the phases corresponding to the energy minimuma, lead to a topological superconducting state with the nontrivial Chern numbers. We focus our quantitative analysis on the properties of topological states of superconductors with different crystalline symmetry and show that the phase transition in the topological superconducting state is result of spontaneous breaking of time-reversal symmetry in the superconducting state. The peculiarities in the chiral gapless edge modes behavior are studied, the Chern numbers are calculated.
We show that the merging of the spin- and valley-split Landau levels at the chemical potential is an intrinsic property of a strongly-interacting two-dimensional electron system in silicon. Evidence for the level merging is given by available experimental data.
States of matter that break time-reversal symmetry are invariably associated with magnetism or circulating currents. Recently, one of us proposed a phase, the directional scalar spin chiral order (DSSCO), as an exception: it breaks time-reversal symm etry via chiral ordering of spins along a particular direction, but is spin-rotation symmetric. In this work, we prove the existence of this state via state-of-the-art density matrix renormalization group (DMRG) analysis on a spin-1 chain with nearest-neighbor bilinear-biquadratic interactions and additional third-neighbor ferromagnetic Heisenberg exchange. Despite the large entanglement introduced by the third-neighbor coupling, we are able to access system sizes up to $L=918$ sites. We find first order phase transitions from the DSSCO into the famous Haldane phase as well as a spin-quadrupolar phase where spin nematic correlations dominate. In the Haldane phase, we propose and demonstrate a method for detecting the topological edge states using DMRG that could be useful for other topological phases too.
When matter undergoes a phase transition from one state to another, usually a change in symmetry is observed, as some of the symmetries exhibited are said to be spontaneously broken. The superconducting phase transition in the underdoped high-Tc supe rconductors is rather unusual, in that it is not a mean-field transition as other superconducting transitions are. Instead, it is observed that a pseudo-gap in the electronic excitation spectrum appears at temperatures T* higher than Tc, while phase coherence, and superconductivity, are established at Tc (Refs. 1, 2). One would then wish to understand if T* is just a crossover, controlled by fluctuations in order which will set in at the lower Tc (Refs. 3, 4), or whether some symmetry is spontaneously broken at T* (Refs. 5-10). Here, using angle-resolved photoemission with circularly polarized light, we find that, in the pseudogap state, left-circularly polarized photons give a different photocurrent than right-circularly polarized photons, and therefore the state below T* is rather unusual, in that it breaks time reversal symmetry11. This observation of a phase transition at T* provides the answer to a major mystery of the phase diagram of the cuprates. The appearance of the anomalies below T* must be related to the order parameter that sets in at this characteristic temperature .
We have calculated the ground state wave functions for a systems of multicomponent interacting fermions. We show that it describes the state with spontaneously broken chiral symmetry. In the limit of an infinitely strong interaction it turns into a p hase with a finite density of chiral complexes. The number of particles constituting a complex depends on the number of fermion components. For example, in the case of two component electrons (spin) the condensate is built of four-particle complexes consisting of two right electrons and two left holes with the opposite spins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا