ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches

188   0   0.0 ( 0 )
 نشر من قبل Zhenli Xu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Huckel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, towards the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.

قيم البحث

اقرأ أيضاً

In this paper, we develop an adaptive finite element method for the nonlinear steady-state Poisson-Nernst-Planck equations, where the spatial adaptivity for geometrical singularities and boundary layer effects are mainly considered. As a key contribu tion, the steady-state Poisson-Nernst-Planck equations are studied systematically and rigorous analysis for a residual-based a posteriori error estimate of the nonlinear system is presented. With the help of Schauder fixed point theorem, we show the solution existence and uniqueness of the linearized system derived by taking $G-$derivatives of the nonlinear system, followed by the proof of the relationship between the error of solution and the a posteriori error estimator $eta$. Numerical experiments are given to validate the efficiency of the a posteriori error estimator and demonstrate the expected rate of convergence. In the further tests, adaptive mesh refinements for geometrical singularities and boundary layer effects are successfully observed.
We develop a modified Poisson-Nernst-Planck model which includes both the long-range Coulomb and short-range hard-sphere correlations in its free energy functional such that the model can accurately describe the ion transport in complex environment a nd under a nanoscale confinement. The Coulomb correlation including the dielectric polarization is treated by solving a generalized Debye-Huckel equation which is a Greens function equation with the correlation energy of a test ion described by the self Greens function. The hard-sphere correlation is modeled through the modified fundamental measure theory. The resulting model is available for problems beyond the mean-field theory such as problems with variable dielectric media, multivalent ions, and strong surface charge density. We solve the generalized Debye-Huckel equation by the Wentzel-Kramers-Brillouin approximation, and study the electrolytes between two parallel dielectric surfaces. In comparison to other modified models, the new model is shown more accurate in agreement with particle-based simulations and capturing the physical properties of ionic structures near interfaces.
369 - Guosheng Fu , Zhiliang Xu 2021
We present a novel class of high-order space-time finite element schemes for the Poisson-Nernst-Planck (PNP) equations. We prove that our schemes are mass conservative, positivity preserving, and unconditionally energy stable for any order of approxi mation. To the best of our knowledge, this is the first class of (arbitrarily) high-order accurate schemes for the PNP equations that simultaneously achieve all these three properties. This is accomplished via (1) using finite elements to directly approximate the so-called entropy variable instead of the density variable, and (2) using a discontinuous Galerkin (DG) discretization in time. The entropy variable formulation, which was originally developed by Metti et al. [17] under the name of a log-density formulation, guarantees both positivity of densities and a continuous-in-time energy stability result. The DG in time discretization further ensures an unconditional energy stability in the fully discrete level for any approximation order, where the lowest order case is exactly the backward Euler discretization and in this case we recover the method of Metti et al. [17].
In this paper, we design and analyze third order positivity-preserving discontinuous Galerkin (DG) schemes for solving the time-dependent system of Poisson--Nernst--Planck (PNP) equations, which has found much use in diverse applications. Our DG meth od with Euler forward time discretization is shown to preserve the positivity of cell averages at all time steps. The positivity of numerical solutions is then restored by a scaling limiter in reference to positive weighted cell averages. The method is also shown to preserve steady states. Numerical examples are presented to demonstrate the third order accuracy and illustrate the positivity-preserving property in both one and two dimensions.
The Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions (PNP-FBV) describe ion transport with Faradaic reactions, and have applications in a number of fields. In this article, we develop an adaptive time-steppin g scheme for the solution of the PNP-FBV equations based on two time-stepping methods: a fully implicit (BDF2) method, and an implicit-explicit (SBDF2) method. We present simulations under both current and voltage boundary conditions and demonstrate the ability to simulate a large range of parameters, including any value of the singular perturbation parameter $epsilon$. When the underlying dynamics is one that would have the solutions converge to a steady-state solution, we observe that the adaptive time-stepper based on the SBDF2 method produces solutions that ``nearly converge to the steady state and that, simultaneously, the time-step sizes stabilize to a limiting size $dt_infty$. In the companion to this article cite{YPD_Part2}, we linearize the SBDF2 scheme about the steady-state solution and demonstrate that the linearized scheme is conditionally stable. This conditional stability is the cause of the adaptive time-steppers behaviour. While the adaptive time-stepper based on the fully-implicit (BDF2) method is not subject to such time-step constraints, the required nonlinear solve yields run times that are significantly longer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا