ترغب بنشر مسار تعليمي؟ اضغط هنا

Oscillation mode linewidths and heights of 23 main-sequence stars observed by Kepler

104   0   0.0 ( 0 )
 نشر من قبل Thierry Appourchaux
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar-like oscillations have been observed by Kepler and CoRoT in many solar-type stars, thereby providing a way to probe the stars using asteroseismology. We provide the mode linewidths and mode heights of the oscillations of various stars as a function of frequency and of effective temperature. We used a time series of nearly two years of data for each star. The 23 stars observed belong to the simple or F-like category. The power spectra of the 23 main-sequence stars were analysed using both maximum likelihood estimators and Bayesian estimators, providing individual mode characteristics such as frequencies, linewidths, and mode heights. We study the source of systematic errors in the mode linewidths and mode heights, and we present a way to correct these errors with respect to a common reference fit. Using the correction, we could explain all sources of systematic errors, which could be reduced to less than $pm$15% for mode linewidths and heights, and less than $pm$5% for amplitude, when compared to the reference fit. The effect of a different estimated stellar background and a different estimated splitting will provide frequency-dependent systematic errors that might affect the comparison with theoretical mode linewidth and mode height, therefore affecting the understanding of the physical nature of these parameters. All other sources of relative systematic errors are less dependent upon frequency. We also provide the dependence of the so-called linewidth dip, in the middle of the observed frequency range, as a function of effective temperature. We show that the depth of the dip decreases with increasing effective temperature. The dependence of the dip on effective temperature may imply that the mixing length parameter $alpha$ or the convective flux may increase with effective temperature.



قيم البحث

اقرأ أيضاً

Solar-like oscillations have been observed by {{it Kepler}} and CoRoT in several solar-type stars. We study the variations of stellar p-mode linewidth as a function of effective temperature. Time series of 9 months of Kepler data have been used. The power spectra of 42 cool main-sequence stars and subgiants have been analysed using both Maximum Likelihood Estimators and Bayesian estimators, providing individual mode characteristics such as frequencies, linewidths and mode heights. Here we report on the mode linewidth at maximum power and at maximum mode height for these 42 stars as a function of effective temperature. We show that the mode linewidth at either maximum mode height or maximum amplitude follows a scaling relation with effective temperature, which is a combination of a power law plus a lower bound. The typical power law index is about 13 for the linewidth derived from the maximum mode height, and about 16 for the linewidth derived from the maximum amplitude while the lower bound is about 0.3 microHz and 0.7 microHz, respectively. We stress that this scaling relation is only valid for the cool main-sequence stars and subgiants, and does not have predictive power outside the temperature range of these stars.
104 - Wuming Yang 2016
The determination of the size of the convective core of main-sequence stars is usually dependent on the construction of models of stars. Here we introduce a method to estimate the radius of the convective core of main-sequence stars with masses betwe en about 1.1 and 1.5 $M_{odot}$ from observed frequencies of low-degree p-modes. A formula is proposed to achieve the estimation. The values of the radius of the convective core of four known stars are successfully estimated by the formula. The radius of the convective core of KIC 9812850 estimated by the formula is $mathbf{0.140pm0.028}$ $R_{odot}$. In order to confirm this prediction, a grid of evolutionary models were computed. The value of the convective-core radius of the best-fit model of KIC 9812850 is $0.149$ $R_{odot}$, which is in good agreement with that estimated by the formula from observed frequencies. The formula aids in understanding the interior structure of stars directly from observed frequencies. The understanding is not dependent on the construction of models.
For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.
Context. The advent of space-borne missions such as CoRoT or Kepler providing photometric data has brought new possibilities for asteroseismology across the H-R diagram. Solar-like oscillations are now observed in many stars, including red giants and main- sequence stars. Aims. Based on several hundred identified pulsating red giants, we aim to characterize their oscillation amplitudes and widths. These observables are compared with those of main-sequence stars in order to test trends and scaling laws for these parameters for both main-sequence stars and red giants. Methods. An automated fitting procedure is used to analyze several hundred Fourier spectra. For each star, a modeled spectrum is fitted to the observed oscillation spectrum, and mode parameters are derived. Results. Amplitudes and widths of red-giant solar-like oscillations are estimated for several hundred modes of oscillation. Amplitudes are relatively high (several hundred ppm) and widths relatively small (very few tenths of a {mu}Hz). Conclusions. Widths measured in main-sequence stars show a different variation with the effective temperature than red giants. A single scaling law is derived for mode amplitudes of both red giants and main-sequence stars versus their luminosity to mass ratio. However, our results suggest that two regimes may also be compatible with the observations.
Main sequence turn-off (MSTO) stars have advantages as indicators of Galactic evolution since their ages could be robustly estimated from atmospheric parameters. Hundreds of thousands of MSTO stars have been selected from the LAMOST Galactic sur- vey to study the evolution of the Galaxy, and it is vital to derive accurate stellar parameters. In this work, we select 150 MSTO star candidates from the MSTO stars sample of Xiang that have asteroseismic parameters and determine accurate stellar parameters for these stars combing the asteroseismic parameters deduced from the Kepler photometry and atmospheric parameters deduced from the LAMOST spectra.With this sample, we examine the age deter- mination as well as the contamination rate of the MSTO stars sample. A comparison of age between this work and Xiang shows a mean difference of 0.53 Gyr (7%) and a dispersion of 2.71 Gyr (28%). The results show that 79 of the candidates are MSTO stars, while the others are contaminations from either main sequence or sub-giant stars. The contamination rate for the oldest stars is much higher than that for the younger stars. The main cause for the high contamination rate is found to be the relatively large systematic bias in the LAMOST surface gravity estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا