ترغب بنشر مسار تعليمي؟ اضغط هنا

First Time-dependent Study of H2 and H3+ Ortho-Para Chemistry in the Diffuse Interstellar Medium: Observations Meet Theoretical Predictions

65   0   0.0 ( 0 )
 نشر من قبل Tobias Albertsson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The chemistry in the diffuse interstellar medium initiates the gradual increase of molecular complexity during the life cycle of matter. A key molecule that enables build-up of new molecular bonds and new molecules via proton-donation is H3+. Its evolution is tightly related to molecular hydrogen and thought to be well understood. However, recent observations of ortho and para lines of H2 and H3+ in the diffuse ISM showed a puzzling discrepancy in nuclear spin excitation temperatures and populations between these two key species. H3+, unlike H2, seems to be out of thermal equilibrium, contrary to the predictions of modern astrochemical models. We conduct the first time-dependent modeling of the para-fractions of H2 and H3+ in the diffuse ISM and compare our results to a set of line-of-sight observations, including new measurements presented in this study. We isolate a set of key reactions for H3+ and find that the destruction of the lowest rotational states of H3+ by dissociative recombination largely control its ortho/para ratio. A plausible agreement with observations cannot be achieved unless a ratio larger than 1:5 for the destruction of (1,1)- and (1,0)-states of H3+ is assumed. Additionally, an increased CR ionization rate to 10(-15) 1/s further improves the fit whereas variations of other individual physical parameters, such as density and chemical age, have only a minor effect on the predicted ortho/para ratios. Thus our study calls for new laboratory measurements of the dissociative recombination rate and branching ratio of the key ion H3+ under interstellar conditions.

قيم البحث

اقرأ أيضاً

68 - Laurent Pagani 2011
Interstellar dark clouds are the sites of star formation. Their main component, dihydrogen, exists under two states, ortho and para. H2 is supposed to form in the ortho:para ratio (OPR) of 3:1 and to subsequently decay to almost pure para-H2 (OPR <= 0.001). Only if the H2 OPR is low enough, will deuteration enrichment, as observed in the cores of these clouds, be efficient. The second condition for strong deuteration enrichment is the local disappearance of CO, which freezes out onto grains in the core formation process. We show that this latter condition does not apply to DCO+, which, therefore, should be present all over the cloud. We find that an OPR >= 0.1 is necessary to prevent DCO+ large-scale apparition. We conclude that the inevitable decay of ortho-H2 sets an upper limit of ~6 million years to the age of starless molecular clouds under usual conditions.
Deuterated species are unique and powerful tools in astronomy since they can probe the physical conditions, chemistry, and ionization level of various astrophysical media. Recent observations of several deuterated species along with some of their spi n isomeric forms have rekindled the interest for more accurate studies on deuterium fractionation. This paper presents the first publicly available chemical network of multiply deuterated species along with spin chemistry implemented on the latest state-of-the-art gas-grain chemical code `NAUTILUS. D/H ratios for all deuterated species observed at different positions of TMC-1 are compared with the results of our model, which considers multiply deuterated species along with the spin chemistry of light hydrogen bearing species H2, H2+, H3+ and their isotopologues. We also show the differences in the modeled abundances of non-deuterated species after the inclusion of deuteration and spin chemistry in the model. Finally, we present a list of potentially observable deuterated species in TMC-1 awaiting detection.
We have revisited the chemistry of chlorine-bearing species in the diffuse interstellar medium with new observations of the HCl$^+$ molecular ion and new astrochemical models. Using the GREAT instrument on board SOFIA, we observed the $^2Pi_{3/2}, J = 5/2 - 3/2$ transition of HCl$^+$ near 1444 GHz toward the bright THz continuum source W49N. We detected absorption by diffuse foreground gas unassociated with the background source, and were able to thereby measure the distribution of HCl$^+$ along the sight-line. We interpreted the observational data using an updated version of an astrochemical model used previously in a theoretical study of Cl-bearing interstellar molecules. The abundance of HCl$^+$ was found to be almost constant relative to the related H$_2$Cl$^+$ ion, but the observed $n({rm H_2Cl^+})/n({rm HCl^+})$ abundance ratio exceeds the predictions of our astrochemical model by an order-of-magnitude. This discrepancy suggests that the rate of the primary destruction process for ${rm H_2Cl^+}$, dissociative recombination, has been significantly overestimated. For HCl$^+$, the model predictions can provide a satisfactory fit to the observed column densities along the W49N sight-line while simultaneously accounting for the ${rm OH^+}$ and ${rm H_2O^+}$ column densities.
The formation of stars and planetary systems is a complex phenomenon, which relies on the interplay of multiple physical processes. Nonetheless, it represents a crucial stage for our understanding of the Universe, and in particular of the conditions leading to the formation of key molecules (e.g. water) on comets and planets. {it Herschel} observations demonstrated that stars form out of gaseous filamentary structures in which the main constituent is molecular hydrogen (H$_2$). Depending on its nuclear spin H$_2$ can be found in two forms: `ortho with parallel spins and `para where the spins are anti-parallel. The relative ratio among these isomers, i.e.,the ortho-to-para ratio (OPR), plays a crucial role in a variety of processes related to the thermodynamics of star-forming gas and to the fundamental chemistry affecting the formation of water in molecular clouds and its subsequent deuteration, commonly used to determine the origin of water in Solar Systems bodies. Here, for the first time, we assess the evolution of the OPR starting from the warm neutral medium, by means of state-of-the-art three-dimensional magneto-hydrodynamic simulations of turbulent molecular clouds. Our results show that star-forming clouds exhibit a low OPR ($ll 0.1$) already at moderate densities ($sim$1000 cm$^{-3}$). We also constrain the cosmic rays ionisation rate, finding that $10^{-16},rm s^{-1}$ is the lower limit required to explain the observations of diffuse clouds. Our results represent a step forward in the understanding of the star and planet formation process providing a robust determination of the chemical initial conditions for both theoretical and observational studies.
Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular D/H ratios have been found in the environments of low-mass star forming regions, and in particular the Class 0 protostar IRAS 16293-2422. The CHESS (Chemical HErschel Sur veys of Star forming regions) Key Program aims at studying the molecular complexity of the interstellar medium. The high sensitivity and spectral resolution of the HIFI instrument provide a unique opportunity to observe the fundamental 1,1,1 - 0,0,0 transition of the ortho-D2O molecule, inaccessible from the ground, and to determine the ortho-to-para D2O ratio. We have detected the fundamental transition of the ortho-D2O molecule at 607.35 GHz towards IRAS 16293-2422. The line is seen in absorption with a line opacity of 0.62 +/- 0.11 (1 sigma). From the previous ground-based observations of the fundamental 1,1,0 - 1,0,1 transition of para-D2O seen in absorption at 316.80 GHz we estimate a line opacity of 0.26 +/- 0.05 (1 sigma). We show that the observed absorption is caused by the cold gas in the envelope of the protostar. Using these new observations, we estimate for the first time the ortho to para D2O ratio to be lower than 2.6 at a 3 sigma level of uncertainty, to be compared with the thermal equilibrium value of 2:1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا