ﻻ يوجد ملخص باللغة العربية
Let $G$ be a finite union of disjoint and bounded Jordan domains in the complex plane, let $mathcal{K}$ be a compact subset of $G$ and consider the set $G^star$ obtained from $G$ by removing $mathcal{K}$; i.e., $G^star:=Gsetminus mathcal{K}$. We refer to $G$ as an archipelago and $G^star$ as an archipelago with lakes. Denote by ${p_n(G,z)}_{n=0}^infty$ and ${p_n(G^star,z)}_{n=0}^infty$, the sequences of the Bergman polynomials associated with $G$ and $G^star$, respectively; that is, the orthonormal polynomials with respect to the area measure on $G$ and $G^star$. The purpose of the paper is to show that $p_n(G,z)$ and $p_n(G^star,z)$ have comparable asymptotic properties, thereby demonstrating that the asymptotic properties of the Bergman polynomials for $G^star$ are determined by the boundary of $G$. As a consequence we can analyze certain asymptotic properties of $p_n(G^star,z)$ by using the corresponding results for $p_n(G,z)$, which were obtained in a recent work by B. Gustafsson, M. Putinar, and two of the present authors. The results lead to a reconstruction algorithm for recovering the shape of an archipelago with lakes from a partial set of its complex moments.
We study the orthogonal polynomials associated with the equilibrium measure, in logarithmic potential theory, living on the attractor of an Iterated Function System. We construct sequences of discrete measures, that converge weakly to the equilibrium
We analyze different measures for the backward error of a set of numerical approximations for the roots of a polynomial. We focus mainly on the element-wise mixed backward error introduced by Mastronardi and Van Dooren, and the tropical backward erro
In this contribution we deal with sequences of monic polynomials orthogonal with respect to the Freud Sobolev-type inner product begin{equation*} leftlangle p,qrightrangle _{s}=int_{mathbb{R}}p(x)q(x)e^{-x^{4}}dx+M_{0}p(0)q(0)+M_{1}p^{prime }(0)q^{pr
For a bilinear form obtained by adding a Dirac mass to a positive definite moment functional in several variables, explicit formulas of orthogonal polynomials are derived from the orthogonal polynomials associated with the moment functional. Explicit
This paper deals with monic orthogonal polynomial sequences (MOPS in short) generated by a Geronimus canonical spectral transformation of a positive Borel measure $mu$, i.e., begin{equation*} frac{1}{(x-c)}dmu (x)+Ndelta (x-c), end{equation*} for som