ترغب بنشر مسار تعليمي؟ اضغط هنا

Colloidal Assemblies of Oriented Maghemite Nanocrystals and their NMR Relaxometric Properties

178   0   0.0 ( 0 )
 نشر من قبل Alexandros Lappas
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Elevated-temperature polyol-based colloidal-chemistry approach allows for the development of size-tunable (50 and 86 nm) assemblies of maghemite iso-oriented nanocrystals, with enhanced magnetization. 1H-Nuclear Magnetic Resonance (NMR) relaxometric experiments show that the ferrimagnetic cluster-like colloidal entities exhibit a remarkable enhancement (4 to 5 times) in the transverse relaxivity, if compared to that of the superparamagnetic contrast agent Endorem, over an extended frequency range (1-60 MHz). The marked increase of the transverse relaxivity r2 at a clinical magnetic field strength (1.41 T), which is 405.1 and 508.3 mM-1 s-1 for small and large assemblies respectively, allows to relate the observed response to the raised intra-aggregate magnetic material volume fraction. Furthermore, cell tests with murine fibroblast culture medium confirmed the cell viability in presence of the clusters. We discuss the NMR dispersion profiles on the basis of relaxivity models to highlight the magneto-structural characteristics of the materials for improved T2-weighted magnetic resonance images.

قيم البحث

اقرأ أيضاً

Controlled assembly of single-crystal, colloidal maghemite nanoparticles is facilitated via a high-temperature polyol-based pathway. Structural characterization shows that size-tunable nanoclusters of 50 and 86 nm diameters (D), with high dispersibil ity in aqueous media, are composed of $sim$ 13 nm (d) crystallographically oriented nanoparticles. The interaction effects are examined against the increasing volume fraction, $phi$, of the inorganic magnetic phase that goes from individual colloidal nanoparticles ($phi$= 0.47) to clusters ($phi$= 0.72). The frozen-liquid dispersions of the latter exhibit weak ferrimagnetic behavior at 300 K. Comparative Mossbauer spectroscopic studies imply that intra-cluster interactions come into play. A new insight emerges from the clusters temperature-dependent ac susceptibility that displays two maxima in $chi$(T), with strong frequency dispersion. Scaling-law analysis, together with the observed memory effects suggest that a superspin glass state settles-in at T$_{B}$ $sim$ 160-200 K, while at lower-temperatures, surface spin-glass freezing is established at T$_{f}$ $sim$40- 70 K. In such nanoparticle-assembled systems, with increased $phi$, Monte Carlo simulations corroborate the role of the inter-particle dipolar interactions and that of the constituent nanoparticles surface spin disorder in the emerging spin-glass dynamics.
Sn$_{0.97-y}$Co$_{0.03}$Ni$_{y}$O$_{2}$ (0 $leq y leq$ 0.04) nanocrystals, with average crystallite size in the range of 7.3 nm ($y$=0.00) to 5.6 nm ($y$=0.04), have been synthesized using pH-controlled chemical co-precipitation technique. The non-st oichiometric Sn related defects and the O related stoichiometric Frenkel defects arising in the nanocrystals because of co-doping have been identified and their effect on the structural and optical properties of the nanocrystals have been extensively studied. It has been observed, using XPS that on increasing the Ni co-doping concentration ($y$), the non-stoichiometric Sn defect Sn$_{text{Sn}}^{}$ increases in compensation of existing defect Sn$_{i}^{....}$ for $y$ = 0.00 nanocrystals. High resolution transmission electron microscopy (HR-TEM) also confirms the existence of Sn$_{text{Sn}}^{}$. Regarding the Frenkel defect, XPS results indicate that the concentration of $V_{text{O}}$ and O$_{i}$, manifested in the form of dangling bond related surface defect states,increases with increase in $y$. Temperature dependent magnetisation measurement of the nanocrystals confirm the charge state of $V_{text{O}}$. The point defects have been found to affect the structural properties in a way that distortion in octahedral geometry of complete Sn-O octahderon effectively reduces whereas distortion in the trigonal planar coordination geometry of O increases. The investigation of Urbach edge indicates an enhancement in the disorder in the nanocrystals on co-doping. The optical band gap of the nanocrystals has been found to be red shifted upto $y$=0.02 and then a gradual blue shift has been observed. A direct effect of the O related defect has been observed on the blue luminescence of the nanocrystals such that the spectral contribution of blue luminescence in the total emission intensity increases by 72% for $y$=0.04 as compared to $y$=0.00.
Images of semiconductor `dot in rods and their small clusters are studied by measuring the second-order correlation function with a spatially resolving ICCD camera. This measurement allows one to distinguish between a single dot and a cluster and, to a certain extent, to estimate the number of dots in a cluster. A more advanced measurement is proposed, based on higher-order correlations, enabling more accurate determination of the number of dots in a small cluster. Nonclassical features of the light emitted by such a cluster are analyzed.
Tuning of the electronic properties of pre-synthesized colloidal semiconductor nanocrystals (NCs) by doping plays a key role in the prospect of implementing them in printed electronics devices such as transistors, and photodetectors. While such impur ity doping reactions have already been introduced, the understanding of the doping process, the nature of interaction between the impurity and host atoms, and the conditions affecting the solubility limit of impurities in nanocrystals are still unclear. Here, we used a post-synthesis diffusion based doping reaction to introduce Ag impurities into InAs NCs. Optical absorption spectroscopy along with analytical inductively coupled plasma mass-spectroscopy (ICP-MS) were used to present a two stage doping model consisting of a doping region and a growth region, depending on the concentration of the impurities in the reaction vessel. X-ray absorption fine-structure (XAFS) spectroscopy was employed to determine the impurity location and correlate between the structural and electronic properties for different sizes of InAs NCs and dopant concentrations. The resulting structural model describes a heterogeneous system where the impurities initially dope the NC, by substituting for In atoms near the surface of the NC, until the solubility limit is reached, after which the rapid growth and formation of metallic structures are identified.
Dynamical materials that capable of responding to optical stimuli have always been pursued for designing novel photonic devices and functionalities, of which the response speed and amplitude as well as integration adaptability and energy effectivenes s are especially critical. Here we show ultrafast pulse generation by exploiting the ultrafast and sensitive nonlinear dynamical processes in tunably solution-processed colloidal epsilon-near-zero (ENZ) transparent conducting oxide (TCO) nanocrystals (NCs), of which the potential respond response speed is >2 THz and modulation depth is ~23% pumped at ~0.7 mJ/cm2, benefiting from the highly confined geometry in addition to the ENZ enhancement effect. These ENZ NCs may offer a scalable and printable material solution for dynamic photonic and optoelectronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا