ﻻ يوجد ملخص باللغة العربية
The cosmic age is an important physical quantity in cosmology. Based on the radiometric method, a reliable lower limit of the cosmic age is derived to be $15.68pm 1.95$ Gyr by using the $r$-process abundances inferred for the solar system and observations in metal-poor stars. This value is larger than the latest cosmic age $13.813pm 0.058$ Gyr from Planck 2013 results, while they still agree with each other within the uncertainties. The uncertainty of $1.95$ Gyr mainly originates from the error on thorium abundance observed in metal-poor star CS 22892-052, so future high-precision abundance observations on CS 22892-052 are needed to understand this age deviation.
We study the s-process abundances (A > 90) at the epoch of the solar-system formation. AGB yields are computed with an updated neutron capture network and updated initial solar abundances. We confirm our previous results obtained with a Galactic Chem
We present detailed chemical abundances of three new bright (V ~ 11), extremely metal-poor ([Fe/H] ~ -3.0), r-process-enhanced halo red giants based on high-resolution, high-S/N Magellan/MIKE spectra. We measured abundances for 20-25 neutron-capture
X-ray spectra in the range $1.5-8.5$~keV have been analyzed for 526 large flares detected with the Solar Assembly for X-rays (SAX) on the Mercury {em MESSENGER} spacecraft between 2007 and 2013. For each flare, the temperature and emission measure of
Extensive progress has been recently made into our understanding of heavy element production via the $r$-process in the Universe, specifically with the first observed neutron star binary merger (NSBM) event associated with the gravitational wave sign
We study the abundance distributions of a sample of metal-rich barium stars provided by Pereira et al. (2011) to investigate the s- and r-process nucleosynthesis in the metal-rich environment. We compared the theoretical results predicted by a parame