ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Structure Towards N=40 60Ca: In-beam gamma-ray Spectroscopy of 58,60Ti

83   0   0.0 ( 0 )
 نشر من قبل Alexandra Gade
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Excited states in the neutron-rich N=38,36 nuclei uc{60}{Ti} and uc{58}{Ti} were populated in nucleon-removal reactions from uc{61}{V} projectiles at 90~MeV/nucleon. The gamma-ray transitions from such states in these Ti isotopes were detected with the advanced gamma-ray tracking array GRETINA and were corrected event-by-event for large Doppler shifts (v/c sim 0.4) using the gamma-ray interaction points deduced from online signal decomposition. The new data indicate that a steep decrease in quadrupole collectivity occurs when moving from neutron-rich N=36,38 Fe and Cr toward the Ti and Ca isotones. In fact, uc{58,60}{Ti} provide some of the most neutron-rich benchmarks accessible today for calculations attempting to determine the structure of the potentially doubly-magic nucleus uc{60}{Ca}.

قيم البحث

اقرأ أيضاً

139 - A. Gade , D. Bazin , B.A. Brown 2011
Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam energy. We report on the first observation of gamma-ray transitions in 35Mg, the odd-N neighbor of 34Mg and 36Mg, which are known to be part of the Island of Inversion around N = 20. The results are discussed in the framework of large- scale shell-model calculations. For the A = 3Z nucleus 33Na, a new gamma-ray transition was observed that is suggested to complete the gamma-ray cascade 7/2+ --> 5/2+ --> 3/2+ gs connecting three neutron 2p-2h intruder states that are predicted to form a close-to-ideal K = 3/2 rotational band in the strong-coupling limit.
The odd-$Z$ $^{251}$Md nucleus was studied using combined $gamma$-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the $[521]1/2^-$ configuration, another rotational structure has been identif ied using $gamma$-$gamma$ coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a $[514]7/2^-$ single-particle configuration has been inferred for this band, i.e., the ground-state band. A physical background that dominates the electron spectrum with an intensity of $simeq$ 60% was well reproduced by simulating a set of unresolved excited bands. Moreover, a detailed analysis of the intensity profile as a function of the angular momentum provided a method for deriving the orbital gyromagnetic factor, namely $g_K = 0.69^{+0.19}_{-0.16}$ for the ground-state band. The odd-$Z$ $^{249}$Md was studied using $gamma$-ray in-beam spectroscopy. Evidence for octupole correlations resulting from the mixing of the $Delta l = Delta j = 3$ $[521]3/2^-$ and $[633]7/2^+$ Nilsson orbitals were found in both $^{249,251}$Md. A surprising similarity of the $^{251}$Md ground-state band transition energies with those of the excited band of $^{255}$Lr has been discussed in terms of identical bands. Skyrme-Hartree-Fock-Bogoliubov calculations were performed to investigate the origin of the similarities between these bands.
Excited states in the $N=40$ isotone $^{62}$Ti were populated via the $^{63}$V$(p,2p)$$^{62}$Ti reaction at $sim$200~MeV/u at the Radioactive Isotope Beam Factory and studied using $gamma$-ray spectroscopy. The energies of the $2^+_1 rightarrow 0^{+} _{mathrm{gs}}$ and $4^+_1 rightarrow 2^+_1$ transitions, observed here for the first time, indicate a deformed $^{62}$Ti ground state. These energies are increased compared to the neighboring $^{64}$Cr and $^{66}$Fe isotones, suggesting a small decrease of quadrupole collectivity. The present measurement is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio and beyond mean-field calculations do not yet reproduce our findings. The shell-model calculations for $^{62}$Ti show a dominant configuration with four neutrons excited across the $N=40$ gap. Likewise, they indicate that the $N=40$ island of inversion extends down to $Z=20$, disfavoring a possible doubly magic character of the elusive $^{60}$Ca.
Collinear laser spectroscopy measurements were performed on $^{69,71,73}$Ge isotopes ($Z = 32$) at ISOLDE-CERN. The hyperfine structure of the $4s^2 4p^2 , ^3P_1 rightarrow 4s^2 4p 5s , ^3P_1^o$ transition of the germanium atom was probed with laser light of 269 nm, produced by combining the frequency-mixing and frequency-doubling techniques. The hyperfine fields for both atomic levels were calculated using state-of-the-art atomic relativistic Fock-space coupled-cluster calculations. A new $^{73}$Ge quadrupole moment was determined from these calculations and previously measured precision hyperfine parameters, yielding $Q_{rm s}$ = $-$0.198(4) b, in excellent agreement with the literature value from molecular calculations. The moments of $^{69}$Ge have been revised: $mu$ = +0.920(5) $mu_{N}$ and $Q_{rm s}$= +0.114(8) b, and those of $^{71}$Ge have been confirmed. The experimental moments around $N = 40$ are interpreted with large-scale shell-model calculations using the JUN45 interaction, revealing rather mixed wave function configurations, although their $g$-factors are lying close to the effective single-particle values. Through a comparison with neighboring isotones, the structural change from the single-particle nature of nickel to deformation in germanium is further investigated around $N = 40$.
We report on the first in-beam $gamma$-ray spectroscopy of the proton-dripline nucleus $^{40}$Sc using two-nucleon pickup onto an intermediate-energy rare-isotope beam of $^{38}$Ca. The $^{9}$Be($^{38}$Ca,$^{40}$Sc$+gamma$)X reaction at 60.9 MeV/nucl eon mid-target energy selectively populates states in $^{40}$Sc for which the transferred proton and neutron couple to high orbital angular momentum. In turn, due to angular-momentum selection rules in proton emission and the nuclear structure and energetics of $^{39}$Ca, such states in $^{40}$Sc then exhibit $gamma$-decay branches although they are well above the proton separation energy. This work uniquely complements results from particle spectroscopy following charge-exchange reactions on $^{40}$Ca as well as $^{40}$Ti EC/$beta^+$ decay which both display very different selectivities. The population and $gamma$-ray decay of the previously known first $(5^-)$ state at 892 keV and the observation of a new level at 2744 keV are discussed in comparison to the mirror nucleus and shell-model calculations. On the experimental side, this work shows that high-resolution in-beam $gamma$-ray spectroscopy is possible with new generation Ge arrays for reactions induced by rare-isotope beams on the level of a few $mu$b of cross section.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا