ﻻ يوجد ملخص باللغة العربية
We present new observations of the XZ Tau system made at high angular resolution (55 milliarcsec) with the Karl G. Jansky Very Large Array (VLA) at a wavelength of 7 mm. Observations of XZ Tau made with the VLA in 2004 appeared to show a triple system, with XZ Tau A resolved into two sources, XZ Tau A and XZ Tau C. The angular separation of XZ Tau A and C (0.09 arcsec) suggested a projected orbital separation of around 13 AU with a possible orbital period of around 40 yr. Our observations were obtained approximately 8 yr later, a fifth of this putative orbital period, and should therefore allow us to constrain the orbit of XZ Tau C, and evaluate the possibility that a recent periastron passage of C coincided with the launch of extended optical outflows from XZ Tau A. Despite improved sensitivity and resolution compared with previous observations, we find no evidence of XZ Tau C in our data. Components A and B are detected with a signal-to-noise ratio greater than ten; their orbits are consistent with previous studies, although the emission from XZ Tau A appears to be weaker. Three possible interpretations are offered: either XZ Tau C is transiting XZ Tau A, which is broadly consistent with the periastron passage hypothesis, or the emission seen in 2004 was that of a transient, or XZ Tau C does not exist. A fourth interpretation, that XZ Tau C was ejected from the system, is dismissed due to the lack of angular momentum redistribution in the orbits of XZ Tau A and XZ Tau B that would result from such an event. Our observations are insufficient to distinguish between the remaining possibilities, at least not until we obtain further VLA observations at a sufficiently later time. A further non-detection would allow us to reject the transit hypothesis, and the periastron passage of XZ Tau C as agent of XZ Tau As outflows.
We perform simulations of the capabilities of the next generation Very Large Array to image stellar radio photospheres. For very large (in angle) stars, such as red supergiants within a few hundred parsecs, good imaging fidelity results can be obtain
Over the last decade, the continuing decline in the cost of digital computing technology has brought about a dramatic transformation in how digital instrumentation for radio astronomy is developed and operated. In most cases, it is now possible to in
We report on a pilot imaging line survey (36.0 - 37.0 GHz, with ~1 km/s spectral channels) with the Expanded Very Large Array for two asymptotic giant branch stars, RW LMi (= CIT6, which has a carbon-rich circumstellar envelope) and IK Tau (= NML Tau
The Very Large Array Sky Survey (VLASS) is a synoptic, all-sky radio sky survey with a unique combination of high angular resolution ($approx$2.5), sensitivity (a 1$sigma$ goal of 70 $mu$Jy/beam in the coadded data), full linear Stokes polarimetry, t
The broad spectral bandwidth at mm and cm-wavelengths provided by the recent upgrades to the Karl G. Jansky Very Large Array (VLA) has made it possible to conduct unbiased searches for molecular CO line emission at redshifts, z > 1.31. We present the