ترغب بنشر مسار تعليمي؟ اضغط هنا

One-loop quantum correction to the mass of the supersymmetric Kink in (1 + 1) dimensions using the exact spectra and the phase shifts

43   0   0.0 ( 0 )
 نشر من قبل Seyed Morteza Hosseini
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the quantum correction to the mass of the kink at the one-loop level in (1+1) dimensions with minimal supersymmetry. In this paper we discuss this issue from the Casimir energy perspective using phase shifts along with the mode number cut-off regularization method. Exact solutions and in particular an exact expression for the phase shifts are already available for the bosonic sector. In this paper we derive analogous exact results for the fermionic sector. Most importantly, we derive a unique and exact expression for the fermionic phase shift, using the exact solutions for the continuum parts of the spectrum and a prescription we had introduced earlier. We use the strong and weak forms of the Levinson theorem merely for checking the consistency of our phase shifts and results, and not as an integral part of our procedure. Moreover, we find that the properties of the fermionic spectrum, including bound and continuum states, are independent of the magnitude of the Yukawa coupling constant $lambda$, and that the dynamical mass generation occurs at the tree level. These are all due to SUSY and are in sharp contrast to analogous models without SUSY, such as the Jackiw-Rebbi model, where $lambda$ is a free parameter. We use the renormalized perturbation theory and find the counterterm which is consistent with supersymmetry. We show that this procedure is sufficient to obtain the accepted value for the one-loop quantum correction to the mass of the SUSY kink which is $-frac{m}{2pi}$.

قيم البحث

اقرأ أيضاً

In this work, we study the relativistic quantum kinetic equations in 2+1 dimensions from Wigner function formalism by carrying out a systematic semi-classical expansion up to $hbar$ order. The derived equations allow us to explore interesting transpo rt phenomena in 2+1 dimensions. Within this framework, the parity-odd transport current induced by the external electromagnetic field is self-consistently derived. We also examine the dynamical mass generation by implementing four-fermion interaction with mean-field approximation. In this case, a new kind of transport current is found to be induced by the gradient of the mean-field condensate. Finally, we also utilize this framework to study the dynamical mass generation in an external magnetic field for the 2+1 dimensional system under equilibrium.
We study the decoupling effects in N=1 (global) supersymmetric theories with chiral superfields at the one-loop level. The examples of gauge neutral chiral superfields with the minimal (renormalizable) as well as non-minimal (non- renormalizable) cou plings are considered, and decoupling in gauge theories with U(1) gauge superfields that couple to heavy chiral matter is studied. We calculate the one-loop corrected effective Lagrangians that involve light fields and heavy fields with mass of order M. The elimination of heavy fields by equations of motion leads to decoupling effects with terms that grow logarithmically with M. These corrections renormalize light fields and couplings in the theory (in accordance with the decoupling theorem). When the field theory is an effective theory of the underlying fundamental theory, like superstring theory, where the couplings are calculable, such decoupling effects modify the low-energy predictions for the effective couplings of light fields. In particular, for the class of string vacua with an anomalous U(1) the vacuum restabilization triggers the decoupling effects, which can significantly modify the low energy predictions for the couplings of the surviving light fields. We also demonstrate that quantum corrections to the chiral potential depending on massive background superfields and corresponding to supergraphs with internal massless lines and external massive lines can also arise at the two-loop level.
We consider a computation of one-loop AdS_5 x S^5 superstring correction to the energy radiated by the end-point of a string which moves along a wavy line at the boundary of AdS_5 with a small transverse acceleration (the corresponding classical solu tion was described by Mikhailov in hep-th/0305196). We also compute the one-loop effective action for an arbitrary small transverse string fluctuation background. It is related by an analytic continuation to the Euclidean effective action describing one-loop correction to the expectation value of a wavy Wilson line. We show that both the one-loop contribution to the energy and to the Wilson line are controlled by the subleading term in the strong-coupling expansion of the function B(lambda) as suggested by Correa, Henn, Maldacena and Sever in arXiv:1202.4455.
We compute the one-loop correction to the probe D3-brane action in AdS5 x S5 expanded around the classical Drukker-Fiol solution ending on a circle at the boundary. It is given essentially by the logarithm of the one-loop partition function of an Abe lian ${cal N}=4$ vector multiplet in AdS2 x S2 geometry. This one-loop correction is expected to describe the subleading 1/N term in the expectation value of circular Wilson loop in the totally symmetric rank k representation in SU(N) SYM theory at strong coupling. In the limit k << N when the circular Wilson loop expectation values for the symmetric representation and for the product of k fundamental representations are expected to match we find that this one-loop D3-brane correction agrees with the gauge theory result for the k-fundamental case.
126 - Joseph Ben Geloun 2009
The N=1 supersymmetric invariant Landau problem is constructed and solved. By considering Landau level projections remaining non trivial under N=1 supersymmetry transformations, the algebraic structures of the N=1 supersymmetric covariant non(anti)co mmutative superplane analogue of the ordinary N=0 noncommutative Moyal-Voros plane are identified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا