ﻻ يوجد ملخص باللغة العربية
For a beneficial allele which enters a large unstructured population and eventually goes to fixation, it is known that the time to fixation is approximately $2log(alpha)/alpha$ for a large selection coefficient $alpha$. For a population that is distributed over finitely many colonies, with migration between these colonies, we detect various regimes of the migration rate $mu$ for which the fixation times have different asymptotics as $alpha to infty$. If $mu$ is of order $alpha$, the allele fixes (as in the spatially unstructured case) in time $sim 2log(alpha)/alpha$. If $mu$ is of order $alpha^gamma, 0leq gamma leq 1$, the fixation time is $sim (2 + (1-gamma)Delta) log(alpha)/alpha$, where $Delta$ is the number of migration steps that are needed to reach all other colonies starting from the colony where the beneficial allele appeared. If $mu = 1/log(alpha)$, the fixation time is $sim (2+S)log(alpha)/alpha$, where $S$ is a random time in a simple epidemic model. The main idea for our analysis is to combine a new moment dual for the process conditioned to fixation with the time reversal in equilibrium of a spatial version of Neuhauser and Krones ancestral selection graph.
If we follow an asexually reproducing population through time, then the amount of time that has passed since the most recent common ancestor (MRCA) of all current individuals lived will change as time progresses. The resulting MRCA age process has be
The aim of this paper is to tackle part of the program set by Diekmann et al. in their seminal paper Diekmann et al. (2001). We quote It remains to investigate whether, and in what sense, the nonlinear determin-istic model formulation is the limit of
In the present article, we investigate the effects of dormancy on an abstract population genetic level. We first provide a short review of seed bank models in population genetics, and the role of dormancy for the interplay of evolutionary forces in g
Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity
We derive and apply a partial differential equation for the moment generating function of the Wright-Fisher model of population genetics.