ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-IR Direct Detection of Water Vapor in Tau Boo b

93   0   0.0 ( 0 )
 نشر من قبل Alexandra Lockwood
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use high dynamic range, high-resolution L-band spectroscopy to measure the radial velocity variations of the hot Jupiter in the tau Bootis planetary system. The detection of an exoplanet by the shift in the stellar spectrum alone provides a measure of the planets minimum mass, with the true mass degenerate with the unknown orbital inclination. Treating the tau Boo system as a high flux ratio double-lined spectroscopic binary permits the direct measurement of the planets true mass as well as its atmospheric properties. After removing telluric absorption and cross-correlating with a model planetary spectrum dominated by water opacity, we measure a 6-sigma detection of the planet at K_p = 111 +- 5 km/s, with a 1-sigma upper limit on the spectroscopic flux ratio of 10^-4. This radial velocity leads to a planetary orbital inclination of i = 45+3-4degrees and a mass of M_P = 5.90+0.35-0.20 M_ Jup. We report the first detection of water vapor in the atmosphere of a non-transiting hot Jupiter, tau Boo b.


قيم البحث

اقرأ أيضاً

Aims: We aim at detecting H$_2$O in the atmosphere of the hot Jupiter HD 209458 b and perform a multi-band study in the near infrared with CARMENES. Methods: The H$_2$O absorption lines from the planets atmosphere are Doppler-shifted due to the lar ge change in its radial velocity during transit. This shift is of the order of tens of km s$^{-1}$, whilst the Earths telluric and the stellar lines can be considered quasi-static. We took advantage of this to remove the telluric and stellar lines using SYSREM, a principal component analysis algorithm. The residual spectra contain the signal from thousands of planetary molecular lines well below the noise level. We retrieve this information by cross-correlating the spectra with models of the atmospheric absorption. Results: We find evidence of H$_2$O in HD 209458 b with a signal-to-noise ratio (S/N) of 6.4. The signal is blueshifted by --5.2 $^{+2.6}_{-1.3}$ km s$^{-1}$, which, despite the error bars, is a firm indication of day-to-night winds at the terminator of this hot Jupiter. Additionally, we performed a multi-band study for the detection of H$_2$O individually from the three NIR bands covered by CARMENES. We detect H$_2$O from its 1.0 $mu$m band with a S/N of 5.8, and also find hints from the 1.15 $mu$m band, with a low S/N of 2.8. No clear planetary signal is found from the 1.4 $mu$m band. Conclusions: Our significant signal from the 1.0 $mu$m band in HD 209458 b represents the first detection of H$_2$O from this band, the bluest one to date. The unfavorable observational conditions might be the reason for the inconclusive detection from the stronger 1.15 and 1.4 $mu$m bands. H$_2$O is detected from the 1.0 $mu$m band in HD 209458 b, but hardly in HD 189733 b, which supports a stronger aerosol extinction in the latter.
The upsilon Andromedae system was the first multi-planet system discovered orbiting a main sequence star. We describe the detection of water vapor in the atmosphere of the innermost non-transiting gas giant ups~And~b by treating the star-planet syste m as a spectroscopic binary with high-resolution, ground-based spectroscopy. We resolve the signal of the planets motion and break the mass-inclination degeneracy for this non-transiting planet via deep combined flux observations of the star and the planet. In total, seven epochs of Keck NIRSPEC $L$ band observations, three epochs of Keck NIRSPEC short wavelength $K$ band observations, and three epochs of Keck NIRSPEC long wavelength $K$ band observations of the ups~And~system were obtained. We perform a multi-epoch cross correlation of the full data set with an atmospheric model. We measure the radial projection of the Keplerian velocity ($K_P$ = 55 $pm$ 9 km/s), true mass ($M_b$ = 1.7 $^{+0.33}_{-0.24}$ $M_J$), and orbital inclination big($i_b$ = 24 $pm$ 4$^{circ}$big), and determine that the planets opacity structure is dominated by water vapor at the probed wavelengths. Dynamical simulations of the planets in the ups~And~system with these orbital elements for ups~And~b show that stable, long-term (100 Myr) orbital configurations exist. These measurements will inform future studies of the stability and evolution of the ups~And~system, as well as the atmospheric structure and composition of the hot Jupiter.
The helium absorption line at 10830 {AA}, originating from the metastable triplet state 2$^3$S, has been suggested as an excellent probe for the extended atmospheres of hot Jupiters and their hydrodynamic escape processes, and has recently been detec ted in the transmission spectra of a handful of planets. The isotropic re-emission will lead to helium airglow that may be observable at other orbital phases. The goal of this paper is to investigate the detectability of He I emission at 10830 {AA} in the atmospheres of exoplanets using high-resolution spectroscopy, providing insights into the properties of the upper atmospheres of close-in gas giants. We estimated the expected strength of He I emission in hot Jupiters based on their transmission signal. We searched for the He I 10830 {AA} emission feature in tau Boo b in three nights of high-resolution spectra taken by CARMENES at the 3.5m Calar Alto telescope. The spectra from each night were corrected for telluric absorption, sky emission lines, and stellar features, and were shifted to the planetary rest frame to search for the emission. The He I emission is not detected in tau Boo b, reaching a 5 sigma contrast limit of 4$times$10$^{-4}$ for emission line widths above 20 km/s. This is roughly a factor of 8 above the expected level of emission (assuming a typical He I transit absorption of 1% for hot Jupiters). This suggests that targeting the He I emission with well-designed observations using upcoming instruments such as VLT/CRIRES+ and E-ELT/HIRES is possible.
123 - L. Podio , I. Kamp , C. Codella 2013
Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the oute r disk, where most of water ice reservoir is stored, was only reported in the closeby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para- water ground-state transitions at 557, 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are ~19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H2O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 Msun, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of ~1e2-1e3 Earth oceans in vapour, and ~100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by impact of icy bodies forming in the outer disk.
We are on the verge of characterizing the atmospheres of terrestrial exoplanets in the habitable zones of M dwarf stars. Due to their large planet-to-star radius ratios and higher frequency of transits, terrestrial exoplanets orbiting M dwarf stars a re favorable for transmission spectroscopy. In this work, we quantify the effect that water clouds have on the amplitude of water vapor transmission spectral features of terrestrial exoplanets orbiting M dwarf stars. To do so, we make synthetic transmission spectra from general circulation model (GCM) experiments of tidally locked planets. We improve upon previous work by considering how varying a broad range of planetary parameters affects transmission spectra. We find that clouds lead to a 10-100 times increase in the number of transits required to detect water features with the James Webb Space Telescope (JWST) with varying rotation period, incident stellar flux, surface pressure, planetary radius, and surface gravity. We also find that there is a strong increase in the dayside cloud coverage in our GCM simulations with rotation periods $gtrsim 12 mathrm{days}$ for planets with Earths radius. This increase in cloud coverage leads to even stronger muting of spectral features for slowly rotating exoplanets orbiting M dwarf stars. We predict that it will be extremely challenging to detect water transmission features in the atmospheres of terrestrial exoplanets in the habitable zone of M dwarf stars with JWST. However, species that are well-mixed above the cloud deck (e.g., CO$_2$ and CH$_4$) may still be detectable on these planets with JWST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا