We estimate the current theoretical uncertainty in supersymmetric dark matter predictions by comparing several state-of-the-art calculations within the minimal supersymmetric standard model (MSSM). We consider standard neutralino dark matter scenario
s -- coannihilation, well-tempering, pseudoscalar resonance -- and benchmark models both in the pMSSM framework and in frameworks with Grand Unified Theory (GUT)-scale unification of supersymmetric mass parameters. The pipelines we consider are constructed from the publicly available software packages SOFTSUSY, SPheno, FeynHiggs, SusyHD, micrOMEGAs, and DarkSUSY. We find that the theoretical uncertainty in the relic density as calculated by different pipelines, in general, far exceeds the statistical errors reported by the Planck collaboration. In GUT models, in particular, the relative discrepancies in the results reported by different pipelines can be as much as a few orders of magnitude. We find that these discrepancies are especially pronounced for for cases where the dark matter physics relies critically on calculations related to electroweak symmetry breaking, which we investigate in detail, and for coannihilation models, where there is heightened sensitivity to the sparticle spectrum. The dark matter annihilation cross section today and the scattering cross section with nuclei also suffer appreciable theoretical uncertainties, which, as experiments reach the relevant sensitivities, could lead to uncertainty in conclusions regarding the viability or exclusion of particular models.
We describe a characteristic signature of dark matter (DM) annihilation or decay into gamma-rays. We show that if the total angular momentum of the initial DM particle(s) vanishes, and helicity suppression operates to prevent annihilation/decay into
light fermion pairs, then the amplitude for the dominant 3-body final state f^+f^-gamma has a unique form dictated by gauge invariance. This amplitude and the corresponding energy spectra hold for annihilation of DM Majorana fermions or self-conjugate scalars, and for decay of DM scalars, thus encompassing a variety of possibilities. Within this scenario, we analyze Fermi LAT, PAMELA and HESS data, and predict a hint in future Fermi gamma-ray data that portends a striking signal at atmospheric Cherenkov telescopes (ACTs).
We report on the possibility that the Dark Matter particle is a stable, neutral, as-yet-undiscovered hadron in the standard model. The existence of a compact color-flavor-spin singlet sexaquark (S, uuddss) with mass ~2m_p, is compatible with current
knowledge. The S interacts with baryons primarily via a Yukawa interaction of coupling strength alpha_SN, mediated by omega and phi vector mesons having mass ~1 GeV. If it exists, the S is a very attractive DM candidate. The relic abundance of S Dark Matter (SDM) is established when the Universe transitions from the quark-gluon plasma to the hadronic phase at ~150 MeV and is in remarkable agreement with the observed Omega_DM/Omega_b = 5.3+-0.1; this is a no-free-parameters result because the relevant parameters are known from QCD. Survival of this relic abundance to low temperature requires the breakup amplitude gtilde <~ 2 10^-6, comfortably compatible with theory expectations and observational bounds because the breakup amplitude is dynamically suppressed and many orders of magnitude smaller, as we show. The scattering cross section can differ by orders of magnitude from Born approximation, depending on alpha_SN, requiring reanalysis of observational limits. We use direct detection experiments and cosmological constraints to determine the allowed region of alpha_SN. For a range of allowed values, we predict exotic nuclear isotopes at a detectable level with mass offset ~2 amu. The most promising approaches for detecting the sexaquark in accelerator experiments are to search for a long-interaction-length neutral particle component in the central region of relativistic heavy ion collisions or using a beam-dump setup, and to search for evidence of missing particle production characterized by unbalanced baryon number and strangeness using Belle-II or possibly GLUEX at J-Lab.
Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice cal
culations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 degenerate fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous magnetic moment, both of which can play a significant role for direct detection of composite dark matter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross-sections for dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100, excluding dark matter candidates of this type with masses below 10 TeV.
We propose a new strategy to directly detect light particle dark matter that has long-ranged interactions with ordinary matter. The approach involves distorting the local flow of dark matter with time-varying fields and measuring these distortions wi
th shielded resonant detectors. We apply this idea to sub-MeV dark matter particles with very small electric charges or coupled to a light vector mediator, including the freeze-in parameter space targeted by low mass direct detection efforts. This approach can probe dark matter masses ranging from 10 MeV to below a meV, extending beyond the capabilities of existing and proposed direct detection experiments.
G. Belanger
,F. Boudjema
,A. Pukhov
.
(2014)
.
"micrOMEGAs : a code for the calculation of Dark Matter properties in generic models of particle interaction"
.
Genevieve Belanger
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا