ترغب بنشر مسار تعليمي؟ اضغط هنا

On the nature of the hostless short GRBs

209   0   0.0 ( 0 )
 نشر من قبل Rachel Tunnicliffe Miss
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A significant proportion ($sim30%$) of the short-duration gamma-ray bursts (SGRBs) localised by Swift have no detected host galaxy coincident with the burst location to deep limits, and also no high-likelihood association with proximate galaxies on the sky. These SGRBs may represent a population at moderately high redshifts ($zgtrsim1$), for which the hosts are faint, or a population where the progenitor has been kicked far from its host or is sited in an outlying globular cluster. We consider the afterglow and host observations of three hostless bursts (GRBs 090305A, 091109B and 111020A), coupled with a new observational diagnostic to aid the association of SGRBs with putative host galaxies to investigate this issue. Considering the well localised SGRB sample, 7/25 SGRBs can be classified as hostless by our diagnostic. Statistically, however, the proximity of these seven SGRBs to nearby galaxies is higher than is seen for random positions on the sky. This suggests that the majority of hostless SGRBs have likely been kicked from proximate galaxies at moderate redshift. Though this result still suggests only a small proportion of SGRBs will be within the AdLIGO horizon for NS-NS or NS-BH inspiral detection ($zsim0.1$), in the particular case of GRB 111020A a plausible host candidate is at $z=0.02$.



قيم البحث

اقرأ أيضاً

(Shortened) [...] After recalling the basic features of the fireshell model, we emphasize the following novel results: 1) the interpretation of the X-ray flares in GRB afterglows as due to the interaction of the optically thin fireshell with isolated clouds in the CircumBurst Medium (CBM); 2) an interpretation as fake - disguised short GRBs of the GRBs belonging to the class identified by Norris & Bonnell [...] consistent with an origin from the final coalescence of a binary system in the halo of their host galaxies with particularly low CBM density [...]; 3) the first attempt to study a genuine short GRB with the analysis of GRB 050509B, that reveals indeed still an open question; 4) the interpretation of the GRB-SN association in the case of GRB 060218 via the induced gravitational collapse process; 5) a first attempt to understand the nature of the Amati relation, a phenomenological correlation between the isotropic-equivalent radiated energy of the prompt emission E_{iso} with the cosmological rest-frame u F_{ u} spectrum peak energy E_{p,i}. In addition, recent progress on the thermalization of the electron-positron plasma close to their formation phase, as well as the structure of the electrodynamics of Kerr-Newman Black Holes are presented. An outlook for possible explanation of high-energy phenomena in GRBs to be expected from the AGILE and the Fermi satellites are discussed. As an example of high energy process, the work by Enrico Fermi dealing with ultrarelativistic collisions is examined. It is clear that all the GRB physics points to the existence of overcritical electrodynamical fields. In this sense we present some progresses on a unified approach to heavy nuclei and neutron stars cores, which leads to the existence of overcritical fields under the neutron star crust.
On the ground of the large number of gamma-ray bursts (GRBs) detected with cosmological redshift, we classified GRBs in seven subclasses, all with binary progenitors originating gravitational waves (GWs). Each binary is composed by combinations of ca rbon-oxygen cores (CO$_{rm core}$), neutron stars (NSs), black holes (BHs) and white dwarfs (WDs). The long bursts, traditionally assumed to originate from a BH with an ultra-relativistic jetted emission, not emitting GWs, have been subclassified as (I) X-ray flashes (XRFs), (II) binary-driven hypernovae (BdHNe), and (III) BH-supernovae (BH-SNe). They are framed within the induced gravitational collapse (IGC) paradigm with progenitor a CO$_{rm core}$-NS/BH binary. The supernova (SN) explosion of the CO$_{rm core}$ triggers an accretion process onto the NS/BH. If the accretion does not lead the NS to its critical mass, an XRF occurs, while when the BH is present or formed by accretion, a BdHN occurs. When the binaries are not disrupted, XRFs lead to NS-NS and BdHNe lead to NS-BH. The short bursts, originating in NS-NS, are subclassified as (IV) short gamma-ray flashes (S-GRFs) and (V) short GRBs (S-GRBs), the latter when a BH is formed. There are (VI) ultra-short GRBs (U-GRBs) and (VII) gamma-ray flashes (GRFs), respectively formed in NS-BH and NS-WD. We use the occurrence rate and GW emission of these subclasses to assess their detectability by Advanced LIGO-Virgo, eLISA, and resonant bars. We discuss the consequences of our results in view of the announcement of the LIGO-Virgo Collaboration of the source GW 170817 as being originated by a NS-NS.
We derive the luminosity function and redshift distribution of short Gamma Ray Bursts (SGRBs) using (i) all the available observer-frame constraints (i.e. peak flux, fluence, peak energy and duration distributions) of the large population of Fermi SG RBs and (ii) the rest-frame properties of a complete sample of Swift SGRBs. We show that a steep $phi(L)propto L^{-a}$ with a>2.0 is excluded if the full set of constraints is considered. We implement a Monte Carlo Markov Chain method to derive the $phi(L)$ and $psi(z)$ functions assuming intrinsic Ep-Liso and Ep-Eiso correlations or independent distributions of intrinsic peak energy, luminosity and duration. To make our results independent from assumptions on the progenitor (NS-NS binary mergers or other channels) and from uncertainties on the star formation history, we assume a parametric form for the redshift distribution of SGRBs. We find that a relatively flat luminosity function with slope ~0.5 below a characteristic break luminosity ~3$times10^{52}$ erg/s and a redshift distribution of SGRBs peaking at z~1.5-2 satisfy all our constraints. These results hold also if no Ep-Liso and Ep-Eiso correlations are assumed. We estimate that, within ~200 Mpc (i.e. the design aLIGO range for the detection of GW produced by NS-NS merger events), 0.007-0.03 SGRBs yr$^{-1}$ should be detectable as gamma-ray events. Assuming current estimates of NS-NS merger rates and that all NS-NS mergers lead to a SGRB event, we derive a conservative estimate of the average opening angle of SGRBs: $theta_{jet}$~3-6 deg. Our luminosity function implies an average luminosity L~1.5$times 10^{52}$ erg/s, nearly two orders of magnitude higher than previous findings, which greatly enhances the chance of observing SGRB orphan afterglows. Efforts should go in the direction of finding and identifying such orphan afterglows as counterparts of GW events.
GRB 090426 is a short duration burst detected by Swift ($T_{90}sim 1.28$ s in the observer frame, and $T_{90}sim 0.33$ s in the burst frame at $z=2.609$). Its host galaxy properties and some $gamma$-ray related correlations are analogous to those see n in long duration GRBs, which are believed to be of a massive-star origin (so-called Type II GRBs). We present the results of its early optical observations with the 0.8-m TNT telescope at Xinglong observatory, and the 1-m LOAO telescope at Mt. Lemmon Optical Astronomy Observatory in Arizona. Our well-sampled optical afterglow lightcurve covers from $sim 90$ seconds to $sim 10^4$ seconds post the GRB trigger. It shows two shallow decay episodes that are likely due to energy injection, which end at $sim 230$ seconds and $sim 7100$ seconds, respectively. The decay slopes post the injection phases are consistent with each other ($alphasimeq 1.22$). The X-ray afterglow lightcurve appears to trace the optical, although the second energy injection phase was missed due to visibility constraints introduced by the {em Swift} orbit. The X-ray spectral index is $beta_Xsim 1.0$ without temporal evolution. Its decay slope is consistent with the prediction of the forward shock model. Both X-ray and optical emission is consistent with being in the same spectral regime above the cooling frequency ($ u_c$). The fact that $ u_c$ is below the optical band from the very early epoch of the observation provides a constraint on the burst environment, which is similar to that seen in classical long duration GRBs. We therefore suggest that death of a massive star is the possible progenitor of this short burst.
In order to better understand the physical origin of short duration gamma-ray bursts (GRBs), we perform time-resolved spectral analysis on a sample of 70 pulses in 68 short GRBs with burst duration $T_{90}lesssim2$ s detected by the textit{Fermi}/GBM . We apply a Bayesian analysis to all spectra that have statistical significance $Sge15$ within each pulse and apply a cut-off power law (CPL) model. We then select in each pulse the timebin that has the maximal value of the low energy spectral index, %$alpha_{rm max}$, for further analysis. Under the assumption that the main emission mechanism is the same throughout each pulse, such an analysis is indicative of pulse emission. We find that $sim$1/3 of short GRBs are consistent with a pure, non-dissipative photospheric model, at least, around the peak of the pulse. This fraction is larger compare to the corresponding one (1/4) obtained for long GRBs. For these bursts, we find (i) a bi-modal distribution in the values of the Lorentz factors and the hardness ratios; (ii) an anti-correlation between $T_{90}$ and the peak energy, $E_{rm pk}$: $T_{90} propto E_{rm pk}^{-0.50pm0.19}$. This correlation disappears when we consider the entire sample. Our results thus imply that the short GRB population may in fact be composed of two separate populations: one being a continuation of the long GRB population to shorter durations, and the other one being distinctly separate with different physical properties. Furthermore, thermal emission is initially ubiquitous, but is accompanied at longer times by additional radiation (likely synchrotron).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا