ﻻ يوجد ملخص باللغة العربية
The constraint imposed by magnetic helicity conservation on the alpha effect is considered for both magnetically and flow dominated self-organizing plasmas. Direct numerical simulations are presented for a dominant contribution to the alpha effect, which can be cast in the functional form of a total divergence of an averaged helicity flux, called the helicity-flux-driven alpha ( H$alpha$) effect. Direct numerical simulations of the H$alpha$ effect are prese nted for two examples---the magnetically dominated toroidal plasma unstable to tearing modes, and the flow-dominated accretion disk.
The use of Z-pinch facilities makes it possible to carry out well-controlled and diagnosable laboratory experiments to study laboratory jets with scaling parameters close to those of the jets from young stars. This makes it possible to observe proces
A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al. 2009) for pre
We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. Turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic w
Heat flux suppression in collisionless plasmas for a large range of plasma $beta$ is explored using two-dimensional particle-in-cell simulations with a strong, sustained thermal gradient. We find that a transition takes place between whistler-dominat
The results of MHD numerical simulations of the formation and development of magnetized jets are presented. Similarity criteria for comparisons of the results of laboratory laser experiments and numerical simulations of astrophysical jets are discuss