ﻻ يوجد ملخص باللغة العربية
We have synthesized and investigated the heterointerfaces of KTaO$_3$ (KTO) and GdScO$_3$ (GSO), which are both polar complex-oxides along the pseudo-cubic [001] direction. Since their layers have the same, conflicting net charges at interfaces, i.e. KO(-1)/ScO$_2$(-1) or TaO$_2$(+1)/GdO(+1), forming the heterointerface of KTO/GSO should be forbidden due to strong Coulomb repulsion, the so-called $textit{polarity conflict}$. However, we have discovered that atomic reconstruction occurs at the heterointerfaces between KTO thin-films and GSO substrates, which effectively alleviates the polarity conflict without destroying the hetero-epitaxy. Our result demonstrates one of the important ways to create artificial heterostructures from polar complex-oxides.
Dynamical multiferroicity features entangled dynamic orders: fluctuating electric dipoles induce magnetization. Hence, the material with paraelectric fluctuations can develop magnetic signatures if dynamically driven. We identify the paraelectric KTa
We demonstrate the formation of a two-dimensional electron gas (2DEG) at the $(100)$ surface of the $5d$ transition-metal oxide KTaO$_3$. From angle-resolved photoemission, we find that quantum confinement lifts the orbital degeneracy of the bulk ban
Advances in synthesis techniques and materials understanding have given rise to oxide heterostructures with intriguing physical phenomena that cannot be found in their constituents. In these structures, precise control of interface quality, including
Recent experiments have shown that transition metal oxide heterostructures such as SrTiO$_3$-based interfaces, exhibit large, gate tunable, spintronic responses. Our theoretical study showcases key factors controlling the magnitude of the conversion,
At interfaces between oxide materials, lattice and electronic reconstructions always play important roles in exotic phenomena. In this study, the density functional theory and maximally localized Wannier functions are employed to investigate the (LaT