ﻻ يوجد ملخص باللغة العربية
The Li-rich turn-off star in the globular cluster NGC 6397 could represent the smoking gun for some very rare episode of Li enrichment in globular clusters. We aim to understand the nature of the Li enrichment by performing a spectroscopic analysis of the star, in particular of its beryllium (Be) abundance, and by investigating its binary nature. We observe the near UV region where the Beii resonance doublet and the NH bands are located. We could not detect the Beii lines and derive an upper limit of log (Be/H)< -12.2, that is consistent with the Be observed in other stars of the cluster. We could detect a weak G-band, which implies a mild carbon enhancement [C/Fe]$+0.4pm0.2$. We could not detect the UV NH band, and we derive an upper limit [N/Fe]$< 0.0$. For oxygen we could notdetect any of the near UV OH lines, which implies that oxygen cannot be strongly enhanced in this star. This is consistent with the detection of the Oi triplet at 777nm, which is consistent with [O/Fe]~0.5. Combining the UVES and Mike data, we could not detect any variation in the radial velocity greater than 0.95 kms$^{-1}$ over 8 years. The chemical composition of the star strongly resembles that of `first generation NGC6397 stars, with the huge Li as the only deviating abundance. Not detecting Be rules out two possible explanations of the Li overabundance: capture of a substellar body and spallation caused by a nearby type II SNe. Discrepancies are also found with respect to other accretion scenarios,except for contamination by the ejecta of a star that has undergone the RGB Li-flash.
The discrepancy between cosmological Li abundance inferred from Population II dwarf stars and that derived from WMAP/BBNS is still far from being solved.We investigated, as an alternative route, the use of Li abundances in Population II lower RGB sta
We present a new abundance analysis of the super Li-rich star J37 and a comparison star in NGC 6633. We confirm the result of Deliyannis et al. that J37 has a Li abundance well above the meteoritic value, and we also confirm that Al, S, Si, Ca, Fe an
A Li-rich red giant star (2M19411367+4003382) recently discovered in the direction of NGC 6819 belongs to the rare subset of Li-rich stars that have not yet evolved to the luminosity bump, an evolutionary stage where models predict Li can be replenis
Elemental correlations and anti-correlations are known to be present in globular clusters (GCs) owing to pollution by CNO cycled gas. Because of its fragility Li is destroyed at the temperature at which the CNO cycling occurs, and this makes Li a cru
We performed a detailed study of the evolution of the luminosity of He-ignition stage and of the red giant branch bump luminosity during the red giant branch phase transition for various metallicities. To this purpose we calculated a grid of stellar