ترغب بنشر مسار تعليمي؟ اضغط هنا

The Type Ia supernovae rate with Subaru/XMM-Newton Deep Survey

154   0   0.0 ( 0 )
 نشر من قبل Jun Okumura
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the rates of high-redshift Type Ia supernovae derived from the Subaru/XMM-Newton Deep Survey (SXDS). We carried out repeat deep imaging observations with Suprime-Cam on the Subaru Telescope, and detected 1040 variable objects over 0.918 deg$^2$ in the Subaru/XMM-Newton Deep Field. From the imaging observations, light curves in the observed $i$-band are constructed for all objects, and we fit the observed light curves with template light curves. Out of the 1040 variable objects detected by the SXDS, 39 objects over the redshift range $0.2 < z < 1.4$ are classified as Type Ia supernovae using the light curves. These are among the most distant SN Ia rate measurements to date. We find that the Type Ia supernova rate increase up to $z sim 0.8$ and may then flatten at higher redshift. The rates can be fitted by a simple power law, $r_V(z)=r_0(1+z)^alpha$ with $r_0=0.20^{+0.52}_{-0.16}$(stat.)$^{+0.26}_{-0.07}$(syst.)$times 10^{-4} {rm yr}^{-1}{rm Mpc}^{-3}$, and $alpha=2.04^{+1.84}_{-1.96}$(stat.)$^{+2.11}_{-0.86}$(syst.).



قيم البحث

اقرأ أيضاً

179 - Tomonori Totani 2008
The delay time distribution (DTD) of type Ia supernovae (SNe Ia) from star formation is an important clue to reveal the still unknown progenitor system of SNe Ia. Here we report on a measurement of the SN Ia DTD in a delay time range of t_Ia = 0.1-8. 0 Gyr by using the faint variable objects detected in the Subaru/XMM-Newton Deep Survey (SXDS) down to i ~ 25.5. We select 65 SN candidates showing significant spatial offset from nuclei of the host galaxies having old stellar population at z ~ 0.4-1.2, out of more than 1,000 SXDS variable objects. Although spectroscopic type classification is not available for these, we quantitatively demonstrate that more than ~80% of these should be SNe Ia. The DTD is derived using the stellar age estimates of the old galaxies based on 9 band photometries from optical to mid-infrared wavelength. Combined with the observed SN Ia rate in elliptical galaxies at the local universe, the DTD in t_Ia ~ 0.1-10 Gyr is well described by a featureless power-law as f_D(t_Ia) propto t_Ia^{-1}. The derived DTD is in excellent agreement with the generic prediction of the double-degenerate scenario, giving a strong support to this scenario. In the single-degenerate (SD) scenario, although predictions by simple analytic formulations have broad DTD shapes that are similar to the observation, DTD shapes calculated by more detailed binary population synthesis tend to have strong peaks at characteristic time scales, which do not fit the observation. This result thus indicates either that the SD channel is not the major contributor to SNe Ia in old stellar population, or that improvement of binary population synthesis theory is required. Various sources of systematic uncertainties are examined and tested, but our main conclusions are not affected significantly.
177 - Yoshihiro Ueda 2008
We present the X-ray source catalog in the Subaru/XMM-Newton deep survey. A continuous area of 1.14 deg^2 centered at R.A. = 02h18m and Dec. = -05d is mapped by seven pointings with XMM-Newton covering the 0.2-10 keV band. From the combined images of the EPIC pn and MOS cameras, we detect 866, 1114, 645, and 136 sources with sensitivity limits of 6x10^{-16}, 8x10^{-16}, 3x10^{-15}, and 5x10^{-15} erg cm^{-2} s^{-1} in the 0.5-2, 0.5-4.5, 2-10, and 4.5-10 keV bands, respectively, with detection likelihood >= 7 (corresponding to a confidence level of 99.91%). The catalog consists of 1245 sources in total including 32 extended-source candidates. The averaged log N-log S relations are in good agreement with previous results, bridging the flux range between Chandra deep surveys and brighter surveys. The log N-log S relations show significant spatial variation among pointings on a scale of 0.2 deg^2. Analyzing the auto correlation function, we detect significant clustering signals from the 0.5-2 keV band sample, which can be fit with a power law form (theta/theta_c)^{-0.8} with a correlation length of theta_c=5.9^{+1.0}_{-0.9} arcsec when the integral constraint term is included. In the 2-10 keV band, however, the clustering is not significant with a 90% upper limit of theta_c < 1.5 arcsec.
We present our survey for optically faint variable objects using multi-epoch (8-10 epochs over 2-4 years) $i$-band imaging data obtained with Subaru Suprime-Cam over 0.918 deg$^2$ in the Subaru/XMM-Newton Deep Field (SXDF). We found 1040 optically va riable objects by image subtraction for all the combinations of images at different epochs. This is the first statistical sample of variable objects at depths achieved with 8-10m class telescopes or HST. The detection limit for variable components is $i_{rm{vari}}sim25.5$ mag. These variable objects were classified into variable stars, supernovae (SNe), and active galactic nuclei (AGN), based on the optical morphologies, magnitudes, colors, and optical-mid-infrared colors of the host objects, spatial offsets of variable components from the host objects, and light curves. Detection completeness was examined by simulating light curves for periodic and irregular variability. We detected optical variability for $36pm2%$ ($51pm3%$ for a bright sample with $i<24.4$ mag) of X-ray sources in the field. Number densities of variable obejcts as functions of time intervals $Delta{t}$ and variable component magnitudes $i_{rm{vari}}$ are obtained. Number densities of variable stars, SNe, and AGN are 120, 489, and 579 objects deg$^{-2}$, respectively. Bimodal distributions of variable stars in the color-magnitude diagrams indicate that the variable star sample consists of bright ($Vsim22$ mag) blue variable stars of the halo population and faint ($Vsim23.5$ mag) red variable stars of the disk population. There are a few candidates of RR Lyrae providing a possible number density of $sim10^{-2}$ kpc$^{-3}$ at a distance of $>150$ kpc from the Galactic center.
Large samples of high-redshift supernovae (SNe) are potentially powerful probes of cosmic star formation, metal enrichment, and SN physics. We present initial results from a new deep SN survey, based on re-imaging in the R, i, z bands, of the 0.25 de g2 Subaru Deep Field (SDF), with the 8.2-m Subaru telescope and Suprime-Cam. In a single new epoch consisting of two nights of observations, we have discovered 33 candidate SNe, down to a z-band magnitude of 26.3 (AB). We have measured the photometric redshifts of the SN host galaxies, obtained Keck spectroscopic redshifts for 17 of the host galaxies, and classified the SNe using the Bayesian photometric algorithm of Poznanski et al. (2007) that relies on template matching. After correcting for biases in the classification, 55% of our sample consists of Type Ia supernovae and 45% of core-collapse SNe. The redshift distribution of the SNe Ia reaches z ~ 1.6, with a median of z ~ 1.2. The core-collapse SNe reach z ~ 1.0, with a median of z ~ 0.5. Our SN sample is comparable to the Hubble Space Telescope/GOODS sample both in size and redshift range. The redshift distributions of the SNe in the SDF and in GOODS are consistent, but there is a trend (which requires confirmation using a larger sample) for more high-z SNe Ia in the SDF. This trend is also apparent when comparing the SN Ia rates we derive to those based on GOODS data. Our results suggest a fairly constant rate at high redshift that could be tracking the star-formation rate. Additional epochs on this field, already being obtained, will enlarge our SN sample to the hundreds, and determine whether or not there is a decline in the SN Ia rate at z >~ 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا