ترغب بنشر مسار تعليمي؟ اضغط هنا

A 33 year constancy of the X-ray coronae of AR Lac and eclipse diagnosis of scale height

38   0   0.0 ( 0 )
 نشر من قبل Jeremy Drake
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extensive X-ray and extreme ultraviolet (EUV) photometric observations of the eclipsing RS CVn system AR Lac were obtained over the years 1997 to 2013 with the Chandra X-ray Observatory Extreme Ultraviolet Explorer. During primary eclipse, HRC count rates decrease by ~40%. A similar minimum is seen during one primary eclipse observed by EUVE but not in others owing to intrinsic source variability. Little evidence for secondary eclipses is present in either the X-ray or EUV data, reminiscent of earlier X-ray and EUV observations. Primary eclipses allow us to estimate the extent of a spherically symmetric corona on the primary G star of about 1.3Rsun, or 0.86Rstar, and indicate the G star is likely brighter than the K component by a factor of 2-5. Brightness changes not attributable to eclipses appear to be dominated by stochastic variability and are generally non-repeating. X-ray and EUV light curves cannot therefore be reliably used to reconstruct the spatial distribution of emission assuming only eclipses and rotational modulation are at work. Moderate flaring is observed, where count rates increase by up to a factor of three above quiescence. Combined with older ASCA, Einstein, EXOSAT, ROSAT and Beppo-SAX observations, the data show that the level of quiescent coronal emission at X-ray wavelengths has remained remarkably constant over 33 years, with no sign of variation due to magnetic cycles. Variations in base level X-ray emission seen by Chandra over 13 years are only ~10%, while variations back to pioneering Einstein observations in 1980 amount to a maximum of 45% and more typically about 15%.

قيم البحث

اقرأ أيضاً

We describe observations of a white-light flare (SOL2011-02-24T07:35:00, M3.5) close to the limb of the Sun, from which we obtain estimates of the heights of the optical continuum sources and those of the associated hard X-ray sources.For this purpos e we use hard X-ray images from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI), and optical images at 6173 AA from the Solar Dynamics Observatory (SDO). We find that the centroids of the impulsive-phase emissions in white light and hard X-rays (30-80 keV) match closely in central distance (angular displacement from Sun center), within uncertainties of order 0.2. This directly implies a common source height for these radiations, strengthening the connection between visible flare continuum formation and the accelerated electrons. We also estimate the absolute heights of these emissions, as vertical distances from Sun center. Such a direct estimation has not been done previously, to our knowledge. Using a simultaneous 195 AA image from the Solar-Terrestrial RElations Observatory (STEREO-B) spacecraft to identify the heliographic coordinates of the flare footpoints, we determine mean heights above the photosphere (as normally defined; tau = 1 at 5000 AA) of 305 pm 170 km and 195 pm 70 km, respectively, for the centroids of the hard X-ray (HXR) and white light (WL) footpoint sources of the flare. These heights are unexpectedly low in the atmosphere, and are consistent with the expected locations of tau = 1 for the 6173 AA and the ~40 keV photons observed, respectively.
We present an X-ray image of the BL Lacertae object OJ287 revealing a long jet, curved by 55 degrees and extending 20, or 90 kpc from the nucleus. This de-projects to >1 Mpc based on the viewing angle on parsec scales. Radio emission follows the gene ral X-ray morphology but extends even farther from the nucleus. The upper limit to the isotropic radio luminosity, ~2E24 W/Hz, places the source in the Fanaroff-Riley 1 (FR 1) class, as expected for BL Lac objects. The spectral energy distribution indicates that the extended X-ray emission is from inverse Compton scattering of cosmic microwave background photons. In this case, the derived magnetic field is B ~ 5 microGauss, the minimum electron energy is 7-40 m_e c^2, and the Doppler factor is delta ~ 8 in a knot 8 from the nucleus. The minimum total kinetic power of the jet is 1-2E45 erg/s. Upstream of the bend, the width of the X-ray emission in the jet is about half the projected distance from the nucleus. This implies that the highly relativistic bulk motion is not limited to an extremely thin spine, as has been proposed previously for FR 1 sources. The bending of the jet, the deceleration of the flow from parsec to kiloparsec scales, and the knotty structure can all be caused by standing shocks inclined by ~7 degrees to the jet axis. Moving shocks resulting from major changes in the flow properties can also reproduce the knotty structure, but such a model does not explain as many of the observational details.
In this paper we present a catalogue of 11,745 brown dwarfs with spectral types ranging from L0 to T9, photometrically classified using data from the Dark Energy Survey (DES) year 3 release matched to the Vista Hemisphere Survey (VHS) DR3 and Wide-fi eld Infrared Survey Explorer (WISE) data, covering approx 2,400 deg2 up to i_AB=22. The classification method follows the same photo-type method previously applied to SDSS-UKIDSS-WISE data. The most significant difference comes from the use of DES data instead of SDSS, which allow us to classify almost an order of magnitude more brown dwarfs than any previous search and reaching distances beyond 400 parsecs for the earliest types. Next, we also present and validate the GalmodBD simulation, which produces brown dwarf number counts as a function of structural parameters with realistic photometric properties of a given survey. We use this simulation to estimate the completeness and purity of our photometric LT catalogue down to i_AB=22, as well as to compare to the observed number of LT types. We put constraints on the thin disk scale height for the early L population to be around 450 parsecs, in agreement with previous findings. For completeness, we also publish in a separate table a catalogue of 20,863 M dwarfs that passed our colour cut with spectral types greater than M6. Both the LT and the late M catalogues are found at https://des.ncsa.illinois.edu/releases/other/y3-mlt
99 - Jincy Devasia 2010
We report here an investigation of the X-ray eclipse transitions of the high mass X-ray binary pulsar Cen X-3 in different intensity states. Long term light curve of Cen X-3 obtained with RXTE-ASM spanning for more than 5000 days shows strong aperiod ic flux variations with low and high states. We have investigated the eclipse transitions of Cen X-3 in different intensity states with data obtained from pointed observations with the more sensitive instruments on board ASCA, BeppoSAX, XMM-Newton, Chandra and RXTE. We found a very clear trend of sharp eclipse transitions in the high state and longer transitions in the low state. This is a confirmation of this feature first observed with the RXTE-ASM but now with much better clarity. From the light curves obtained from several missions, it is seen that the eclipse egress in the low state starts earlier by an orbital phase of 0.02 indicating that the observed X-rays originate from a much larger region. We have also performed spectral analysis of the post-eclipse part of each observations. From BeppoSAX observations, the out-of-eclipse X-ray fluxes is found to differ by a factor of ~ 26 during the high and low intensity states while the eclipse count rates differ by a factor of only ~ 4.7. This indicates that in the low state, there is an additional scattering medium which scatters some of the source photons towards the observer even when the neutron star is completely eclipsed. We could also resolve the three iron line components using XMM-Newton observation in the low state. By comparing the iron line equivalent width during the high and low states, it is seen that the width of iron line is relatively large during the low state which supports the fact that significant reprocessing and scattering of X-rays takes place in the low state.
We report the analysis result of UV/X-ray emission from AR~Scorpii, which is an intermediate polar (IP) composed of a magnetic white dwarf and a M-type star, with the XMM-Newton data. The X-ray/UV emission clearly shows a large variation over the orb it, and their intensity maximum (or minimum) is located at the superior conjunction (or inferior conjunction) of the M-type star orbit. The hardness ratio of the X-ray emission shows a small variation over the orbital phase, and shows no indication of the absorption by an accretion column. These properties are naturally explained by the emission from the M-type star surface rather than from the accretion column on the WDs star similar to the usual IPs. Beside, the observed X-ray emission also modulates with WDs spin with a pulse fraction of $sim 14%$. The peak position is aligned in the optical/UV/X-ray band. This supports the hypothesis that the electrons in AR~Scorpii are accelerated to a relativistic speed, and emit non-thermal photons via the synchrotron radiation. In the X-ray bands, the evidence of the power-law spectrum is found in the pulsed component, although the observed emission is dominated by the optically thin thermal plasma emissions with several different temperatures. It is considered that the magnetic dissipation/reconnection process on the M-type star surface heats up the plasma to a temperature of several keV, and also accelerates the electrons to the relativistic speed. The relativistic electrons are trapped in the WDs closed magnetic field lines by the magnetic mirror effect. In this model, the observed pulsed component is explained by the emissions from the first magnetic mirror point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا