ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Extended {gamma}-ray Emission around AGN with H.E.S.S. and Fermi-LAT

135   0   0.0 ( 0 )
 نشر من قبل Kornelia Stycz
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: Very-high-energy (VHE; E>100 GeV) {gamma}-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these {gamma}-rays with the Extragalactic Background Light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially beamed source or a magnetically broadened cascade flux. Aims: Both extended pair halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, 1ES 0229+200 and PKS 2155-304 were searched for, using VHE {gamma}-ray data taken with the High Energy Stereoscopic System (H.E.S.S.), and high energy (HE; 100 MeV<E<100 GeV) {gamma}-ray data with the Fermi Large Area Telescope (LAT). Methods: By comparing the angular distributions of the reconstructed gamma-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results: Upper limits on the extended emission around 1ES 1101-232, 1ES 0229+200 and PKS 2155-304 are found to be at a level of few percent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong Extra-Galactic Magnetic Field (EGMF) values, > 10$^{-12}$G, this limits the production of pair halos developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in magnetically broadened cascades, EGMF strengths in the range (0.3 - 3)$times 10^{-15}$G were excluded for PKS 2155-304 at the 99% confidence level, under the assumption of a 1 Mpc coherence length.



قيم البحث

اقرأ أيضاً

Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of $gamma$-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential $gamma$-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into $boverline{b}$, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for $m_{mathrm{DM}}lesssim100,mathrm{GeV}$. In a more optimistic scenario, we exclude $langle sigma v ranglesim3times10^{-26},mathrm{cm^{3},s^{-1}}$ for $m_{mathrm{DM}}lesssim40,mathrm{GeV}$ for the same channel. Finally, we derive upper limits on the $gamma$-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than $sim6%$.
In the work we search for the $gamma$-ray signal from M33, one of the biggest galaxies in the Local Group, by using the Pass 8 data of Fermi Large Area Telescope (LAT). No statistically significant gamma-ray emission has been detected in the directio n of M33 and we report a new upper limit of high energy ($>100,rm MeV$) photon flux of $2.3times 10^{-9},rm ph,cm^{-2},s^{-1}$, which is more strict than previous constrains and implies a cosmic ray density of M33 lower than that speculated previously. Nevertheless the current limit is still in agreement with the correlation of star formation rate and $gamma$-ray luminosity inferred from the Local group galaxies and a few nearby starburst galaxies.
The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three pulsar wind nebu lae: the Crab Nebula, Vela-X and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates from ~3 times 10^{33} erg s$^{-1}$ to 5 times 10$^{38}$ erg s$^{-1}$ and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the gamma-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X and a new pulsar wind nebula candidate associated with the LAT pulsar PSR J1023-5746, coincident with the TeV source HESS J1023-575. We further explore the association between the H.E.S.S. and the Fermi source by modeling its spectral energy distribution. Flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.
Due to their proximity, high dark-matter content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of dark matter. Recently, eight new dSph candidate s were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with dark matter halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged dark matter annihilation cross section for these new targets. If the estimated dark-matter content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for dark matter particles with masses < 20 GeV annihilating via the b-bbar or tau+tau- channels.
Previous observations with HESS have revealed the existence of an extended very-high-energy (VHE; E>100 GeV) gamma-ray source, HESS J1834-087, coincident with the SNR W41. The origin of the gamma-ray emission has been further investigated with HESS a nd the Fermi-LAT. The gamma-ray data provided by 61h (HESS) and 4 yrs (Fermi LAT) of observations cover over 5 decades in energy (1.8GeV - 30TeV). The morphology and spectrum of the TeV and GeV sources have been studied and multi-wavelength data have been used to investigate the origin of the observed emission. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sig_TeV = 0.17{deg}), both centered on SNR W41 and exhibiting spectra described by a power law of index 2.6. The GeV source detected with Fermi is extended (sig_GeV =0.15{deg}) and morphologically matches the VHE emission. Its spectrum can be described by a power-law with index 2.15 and joins smoothly the one of the whole TeV source. A break appears in the spectra around 100 GeV. Two main scenarios are proposed to explain the emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with a molecular cloud. X-ray observations suggest the presence of a point-like source (pulsar candidate) near the center of the SNR and non-thermal X-ray diffuse emission which could arise from a potential PWN. The PWN scenario is supported by the match of of the TeV and GeV positions with the putative pulsar. However, the overall spectrum is reproduced by a 1-zone leptonic model only if an excess of low-energy electrons is injected by a high spin-down power pulsar. This low-energy component is not needed if the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH maser lines and the hadronic modeling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا