ﻻ يوجد ملخص باللغة العربية
The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities [1]. Here we report the successful incorporation of cerium as guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, via the Kondo interaction, to strong correlation phenomena including the ocurrence of giant thermopowers at low temperatures [2]. Indeed, we observe a 50% enhancement of the thermopower compared to a rare earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a `rattling enhanced Kondo interaction [3] underlies this effect.
We have investigated two-dimensional thermoelectric properties in transition metal oxide heterostructures. In particular, we adopted an unprecedented approach to direct tuning of the 2D carrier density using fractionally {delta}-doped oxide superlatt
Lanthanum hydride LaH$_{10}$ with a sodalitelike clathrate structure was experimentally realized to exhibit a room-temperature superconductivity under megabar pressures. Based on first-principles calculations, we reveal that the metal framework of La
We investigate the transport properties of LixCoO2 thin films whose resistivities are nearly an order of magnitude lower than those of the bulk polycrystals. A metal-nonmetal transition occurs at ~0.8 in a biphasic domain, and the Seebeck coefficient
High-temperature thermopower is interpreted as entropy that a carrier carries. Owing to spin and orbital degrees of freedom, a transition metal perovskite exhibits large thermopower at high temperatures. In this paper, we revisit the high-temperature
We report giant thermopower S = 2.5 mV/K in CoSbS single crystals, a material that shows strong high-temperature thermoelectric performance when doped with Ni or Se. Changes of low temperature thermopower induced by magnetic field point to mechanism