ترغب بنشر مسار تعليمي؟ اضغط هنا

Alfven Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-Induced Emission Line Broadening

328   0   0.0 ( 0 )
 نشر من قبل Rona Oran
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work, we test the predictions of the AWSoM model, a global extended-MHD model capable of calculating the propagation and turbulent dissipation of Alfven waves in any magnetic topology, against high resolution spectra of the quiescent off-disk solar corona. Wave dissipation is the only heating mechanism assumed in this model. Combining 3D model results with the CHIANTI atomic database, we were able to create synthetic line-of-sight spectra which include the effects of emission line broadening due to both thermal and wave-related non-thermal motions. To the best of our knowledge this is the first time a global model is used to obtain synthetic non-thermal line broadening. We obtained a steady-state solution driven by a synoptic magnetogram and compared the synthetic spectra with SUMER observations of a quiescent area above the solar west limb extending between 1.04 and 1.34 solar radii at the equator. Both the predicted line widths and the total line fluxes were consistent with the observations for 5 different ions. Using the 3D solution, we were able to locate the region that contributes the most to the emission used for measuring electron properties; we found that region to be a pseudo-streamer, whose modeled electron temperature and density are consistent with the measured ones. We conclude that the turbulent dissipation assumed in the AWSoM model can simultaneously account for the observed heating rate and the non-dissipated wave energy observed in this region.



قيم البحث

اقرأ أيضاً

The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magneto-hydrodynamics (MHD) code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Suns corona.
We present a new version of the Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. Th e injection of Alfven wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics includes: (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfven waves are partially reflected by the Alfven speed gradient and the vorticity along the field lines. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. The balanced turbulence due to uncorrelated waves near the apex of the closed field lines and the resulting elevated temperatures are addressed. (3) To apportion the wave dissipation to the three temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating. (4) We have incorporated the collisional and collisionless electron heat conduction. We compare the simulated multi-wavelength EUV images of CR2107 with the observations from STEREO/EUVI and SDO/AIA instruments. We demonstrate that the reflection due to strong magnetic fields in proximity of active regions intensifies the dissipation and observable emission sufficiently.
A three-dimensional MHD model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) ins ide the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided the small-scale footpoint motions have velocities of 1-2 km/s and time scales of 60-200 s. The heating rate per unit volume in the chromosphere is 2 to 3 orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.
To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.
Observations have shown that magnetohydrodynamic waves over a large frequency range are ubiquitous in solar prominences. The waves are probably driven by photospheric motions and may transport energy up to prominences suspended in the corona. Dissipa tion of wave energy can lead to heating of the cool prominence plasma, so contributing to the local energy balance within the prominence. Here we discuss the role of Alfven wave dissipation as a heating mechanism for the prominence plasma. We consider a slab-like quiescent prominence model with a transverse magnetic field embedded in the solar corona. The prominence medium is modelled as a partially ionized plasma composed of a charged ion-electron single fluid and two separate neutral fluids corresponding to neutral hydrogen and neutral helium. Friction between the three fluids acts as a dissipative mechanism for the waves. The heating caused by externally-driven Alfven waves incident on the prominence slab is analytically explored. We find that the dense prominence slab acts as a resonant cavity for the waves. The fraction of incident wave energy that is channelled into the slab strongly depends upon the wave period, $P$. Using typical prominence conditions, we obtain that wave energy trapping and associated heating are negligible when $P gtrsim 100$ s, so that it is unlikely that those waves have a relevant influence on prominence energetics. When $1$ s $lesssim P lesssim 100$ s the energy absorption into the slab shows several sharp and narrow peaks, that can reach up to 100%, when the incident wave frequency matches a cavity resonance of the slab. Wave heating is enhanced at those resonant frequencies. Conversely, when $P lesssim 1$ s cavity resonances are absent, but the waves are heavily damped by the strong dissipation. We estimate that wave heating may compensate for about 10% of radiative losses of the prominence plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا