ﻻ يوجد ملخص باللغة العربية
Coarse grained, macroscale, spatial discretisations of nonlinear nonautonomous partial differentialdifference equations are given novel support by centre manifold theory. Dividing the physical domain into overlapping macroscale elements empowers the approach to resolve significant subgrid microscale structures and interactions between neighbouring elements. The crucial aspect of this approach is that centre manifold theory organises the resolution of the detailed subgrid microscale structure interacting via the nonlinear dynamics within and between neighbouring elements. The techniques and theory developed here may be applied to soundly discretise on a macroscale many dissipative nonautonomous partial differentialdifference equations, such as the forced Burgers equation, adopted here as an illustrative example.
We investigate methods for learning partial differential equation (PDE) models from spatiotemporal data under biologically realistic levels and forms of noise. Recent progress in learning PDEs from data have used sparse regression to select candidate
For nonautonomous linear difference equations, we introduce the notion of the so-called nonuniform dichotomy spectrum and prove a spectral theorem. Moreover, we introduce the notion of weak kinematical similarity and prove a reducibility result by the spectral theorem.
In this paper, we introduce the concept of Developmental Partial Differential Equation (DPDE), which consists of a Partial Differential Equation (PDE) on a time-varying manifold with complete coupling between the PDE and the manifolds evolution. In o
In this review paper, we explain how to apply Renormalization Group ideas to the analysis of the long-time asymptotics of solutions of partial differential equations. We illustrate the method on several examples of nonlinear parabolic equations. We d
In this paper we study high order expansions of chart maps for local finite dimensional unstable manifolds of hyperbolic equilibrium solutions of scalar parabolic partial differential equations. Our approach is based on studying an infinitesimal inva