ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of a bulk 3D Dirac multiplet, Lifshitz transition, and nestled spin states in Na3Bi

42   0   0.0 ( 0 )
 نشر من قبل M Zahid Hasan
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Symmetry or topology protected Dirac fermion states in two and three dimensions constitute novel quantum systems that exhibit exotic physical phenomena. However, none of the studied spin-orbit materials are suitable for realizing bulk multiplet Dirac states for the exploration of interacting Dirac physics. Here we present experimental evidence, for the first time, that the compound Na3Bi hosts a bulk spin-orbit Dirac multiplet and their interaction or overlap leads to a Lifshitz transition in momentum space - a condition for realizing interactions involving Dirac states. By carefully preparing the samples at a non-natural-cleavage (100) crystalline surface, we uncover many novel electronic and spin properties in Na3Bi by utilizing high resolution angle- and spin-resolved photoemission spectroscopy measurements. We observe two bulk 3D Dirac nodes that locate on the opposite sides of the bulk zone center point $Gamma$, which exhibit a Fermi surface Lifshitz transition and a saddle point singularity. Furthermore, our data shows evidence for the possible existence of theoretically predicted weak 2D nontrivial spin-orbit surface state with helical spin polarization that are nestled between the two bulk Dirac cones, consistent with the theoretically calculated (100) surface-arc-modes. Our main experimental observation of a rich multiplet of Dirac structure and the Lifshitz transition opens the door for inducing electronic instabilities and correlated physical phenomena in Na3Bi, and paves the way for the engineering of novel topological states using Na3Bi predicted in recent theory.

قيم البحث

اقرأ أيضاً

Experimental identification of three-dimensional (3D) Dirac semimetals in solid state systems is critical for realizing exotic topological phenomena and quantum transport such as the Weyl phases, high temperature linear quantum magnetoresistance and topological magnetic phases. Using high resolution angle-resolved photoemission spectroscopy, we performed systematic electronic structure studies on well-known compound Cd3As2. For the first time, we observe a highly linear bulk Dirac cone located at the Brillouin zone center projected onto the (001) surface which is consistent with a 3D Dirac semimetal phase in Cd3As2. Remarkably, an unusually high Dirac Fermion velocity up to 10.2 textrm{AA}{cdot}$eV (1.5 times 10^{6} ms^-1) is seen in samples where the mobility far exceeds 40,000 cm^2/V.s suggesting that Cd3As2 can be a promising candidate as a hypercone analog of graphene in many device-applications which can also incorporate topological quantum phenomena in a large gap setting. Our experimental identification of this novel topological 3D Dirac semimetal phase, distinct from a 3D topological insulator phase discovered previously, paves the way for exploring higher dimensional relativistic physics in bulk transport and for realizing novel Fermionic matter such as a Fermi arc nodal metal.
High quality hexagon plate-like Na3Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy (STM) and angle-resolved photoemission spectr oscopy (ARPES), allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels (LL) were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na3Bi. In transport measurements on Na3Bi crystals the linear magnetoresistance and Shubnikov-de Haas (SdH) quantum oscillations are observed for the first time.
A topological Dirac semimetal is a novel state of quantum matter which has recently attracted much attention as an apparent 3D version of graphene. In this paper, we report critically important results on the electronic structure of the 3D Dirac semi metal Na3Bi at a surface that reveals its nontrivial groundstate. Our studies, for the first time, reveal that the two 3D Dirac cones go through a topological change in the constant energy contour as a function of the binding energy, featuring a Lifshitz point, which is missing in a strict 3D analog of graphene (in other words Na3Bi is not a true 3D analog of graphene). Our results identify the first example of a band saddle point singularity in 3D Dirac materials. This is in contrast to its 2D analogs such as graphene and the helical Dirac surface states of a topological insulator. The observation of multiple Dirac nodes in Na3Bi connecting via a Lifshitz point along its crystalline rotational axis away from the Kramers point serves as a decisive signature for the symmetry-protected nature of the Dirac semimetals topological groundstate.
We have performed angle-resolved photoemission spectroscopy (ARPES) on layered ternary compounds ZrGeXc (Xc = S, Se, and Te) with square Ge lattices. ARPES measurements with bulk-sensitive soft-x-ray photons revealed a quasi-two-dimensional bulk-band structure with the bulk nodal loops protected by glide mirror symmetry of the crystal lattice. Moreover, high-resolution ARPES measurements near the Fermi level with vacuum-ultraviolet photons combined with first-principles band-structure calculations elucidated a Dirac-node-arc surface state traversing a tiny spin-orbit gap associated with the nodal loops. We found that this surface state commonly exists in ZrGeXc despite the difference in the shape of nodal loops. The present results suggest that the spin-orbit coupling and the multiple nodal loops cooperatively play a key role in creating the exotic Dirac-node-arc surface states in this class of topological line-node semimetals.
We provide evidence that, alongside topologically protected edge states, two-dimensional Chern insulators also support localised bulk states deep in their valance and conduction bands. These states manifest when local potential gradients are applied to the bulk, while all parts of the system remain adiabatically connected to the same phase. In turn, the bulk states produce bulk current transverse to the strain. This occurs even when the potential is always below the energy gap, where one expects only edge currents to appear. Bulk currents are topologically protected and behave like edge currents under external influence, such as temperature or local disorder. Detecting topologically resilient bulk currents offers a direct means to probe the localised bulk states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا