ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral properties of Compton inverse radiation: Application of Compton beams

175   0   0.0 ( 0 )
 نشر من قبل Eugene Bulyak
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Compton inverse radiation emitted due to backscattering of laser pulses off the relativistic electrons possesses high spectral density and high energy of photons - in hard x-ray up to gamma-ray energies - because of short wavelength of laser radiation as compared with the classical electromagnetic devices such as undulators. In this report, the possibility of such radiation to monochromatization by means of collimation is studied. Two approaches have been considered for the description of the spectral-angular density of Compton radiation based on the classical field theory and on the quantum electrodynamics. As is shown, both descriptions produce similar total spectra. On the contrary, angular distribution of the radiation is different: the classical approach predicted a more narrow radiation cone. Also proposed and estimated is a method of the `electronic monochromatization based on the electronic subtraction of the two images produced by the electron beams with slightly different energies. A `proof-of-principle experiment of this method is proposed for the LUXC facility of KEK (Japan).



قيم البحث

اقرأ أيضاً

We present a new paradigm for computation of radiation spectra in the non-linear regime of operation of inverse Compton sources characterized by high laser intensities. The resulting simulations show an unprecedented level of agreement with the exper iments. Increasing the laser intensity changes the longitudinal velocity of the electrons during their collision, leading to considerable non-linear broadening in the scattered radiation spectra. The effects of such ponderomotive broadening are so deleterious that most inverse Compton sources either remain at low laser intensities or pay a steep price to operate at a small fraction of the physically possible peak spectral output. This ponderomotive broadening can be reduced by a suitable frequency modulation (also referred to as chirping, which is not necessarily linear) of the incident laser pulse, thereby drastically increasing the peak spectral density. This frequency modulation, included in the new code as an optional functionality, is used in simulations to motivate the experimental implementation of this transformative technique.
216 - Y. Sakai , I. Gadjev , P. Hoang 2017
Inverse Compton scattering (ICS) is a unique mechanism for producing fast pulses - picosecond and below - of bright X- to gamma-rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interacti on between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, such as the bandwidth of the laser, and the angles of both the electrons and laser photons at collision. The laser field amplitude induces harmonic generation and importantly, for the present work, nonlinear red shifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by this source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present here an experimental study that greatly improves on previous spectral measurement methods based on X-ray K-edge filters, by implementing a multi-layer bent-crystal X-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double-differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced red shifting in the ICS emission process. They reveal in detail the strength of the normalized laser vector potential, and provide a non-destructive measure of the temporal and spatial electron-laser beam overlap.
A nearby super-luminous burst GRB 130427A was simultaneously detected by six $gamma$-ray space telescopes ({it Swift}, Fermi-GBM/LAT, Konus-Wind, SPI-ACS/INTEGRAL, AGILE and RHESSI) and by three RAPTOR full-sky persistent monitors. The isotropic $gam ma-$ray energy release is of $sim 10^{54}$ erg, rendering it the most powerful explosion among the GRBs with a redshift $zleq 0.5$. The emission above 100 MeV lasted about one day and four photons are at energies greater than 40 GeV. We show that the count rate of 100 MeV-100 GeV emission may be mainly accounted for by the forward shock synchrotron radiation and the inverse Compton radiation likely dominates at GeV-TeV energies. In particular, an inverse Compton radiation origin is established for the $sim (95.3,~47.3,~41.4,~38.5,~32)$ GeV photons arriving at $tsim (243,~256.3,~610.6,~3409.8,~34366.2)$ s after the trigger of Fermi-GBM. Interestingly, the external-inverse-Compton-scattering of the prompt emission (the second episode, i.e., $tsim 120-260$ s) by the forward-shock-accelerated electrons is expected to produce a few $gamma-$rays at energies above 10 GeV, while five were detected in the same time interval. A possible unified model for the prompt soft $gamma-$ray, optical and GeV emission of GRB 130427A, GRB 080319B and GRB 090902B is outlined. Implication of the null detection of $>1$ TeV neutrinos from GRB 130427A by IceCube is discussed.
120 - I. Gadjev , N. Sudar , M. Babzien 2017
The generation of X-rays and {gamma}-rays based on synchrotron radiation from free electrons, emitted in magnet arrays such as undulators, forms the basis of much of modern X-ray science. This approach has the drawback of requiring very high energy, up to the multi-GeV-scale, electron beams, to obtain the required photon energy. Due to the limit in accelerating gradients in conventional particle accelerators, reaching high energy typically demands use of instruments exceeding 100s of meters in length. Compact, less costly, monochromatic X-ray sources based on very high field acceleration and very short period undulators, however, may revolutionize diverse advanced X-ray applications ranging from novel X-ray therapy techniques to active interrogation of sensitive materials, by making them accessible in cost and size. Such compactness may be obtained by an all-optical approach, which employs a laser-driven high gradient accelerator based on inverse free electron laser (IFEL), followed by a collision point for inverse Compton scattering (ICS), a scheme where a laser is used to provide undulator fields. We present an experimental proof-of-principle of this approach, where a TW-class CO2 laser pulse is split in two, with half used to accelerate a high quality electron beam up to 84 MeV through the IFEL interaction, and the other half acts as an electromagnetic undulator to generate up to 13 keV X-rays via ICS. These results demonstrate the feasibility of this scheme, which can be joined with other techniques such as laser recirculation to yield very compact, high brilliance photon sources, extending from the keV to MeV scale. Furthermore, use of the IFEL acceleration with the ICS interaction produces a train of very high intensity X-ray pulses, thus also permitting a unique tool that can be phase-locked to a laser pulse in frontier pump-probe experimental scenarios.
We generate inverse Compton scattered X-rays in both linear and nonlinear regimes with a 250 MeV laser wakefield electron accelerator and plasma mirror by retro-reflecting the unused drive laser light to scatter from the accelerated electrons. We cha racterize the X-rays using a CsI(Tl) voxelated scintillator that measures their total energy and divergence as a function of plasma mirror distance from the accelerator exit. At each plasma mirror position, these X-ray properties are correlated with the measured fluence and inferred intensity of the laser pulse after driving the accelerator to determine the laser strength parameter $a_0$. The results show that ICS X-rays are generated at $a_0$ ranging from $0.3pm0.1$ to $1.65pm0.25$, and exceed the strength of co-propagating bremsstrahlung and betatron X-rays at least ten-fold throughout this range of $a_0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا