ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing CP violation with the three years ultra-high energy neutrinos from IceCube

119   0   0.0 ( 0 )
 نشر من قبل Moon Moon Devi Ms.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The IceCube collaboration has recently announced the discovery of ultra-high energy neutrino events. These neutrinos can be used to probe their production source, as well as leptonic mixing parameters. In this work, we have used the first IceCube data to constrain the leptonic CP violating phase $delta_{cp}$. For this, we have analyzed the data in the form of flux ratios. We find that the fit to $delta_{cp}$ depends on the assumptions made on the production mechanism of these astrophyscial neutrinos. Consequently, we also use this data to impose constraints on the sources of the neutrinos.



قيم البحث

اقرأ أيضاً

A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of $10^{-8}, mathrm{GeV}, mathrm{cm}^{-2}, mathrm{s}^{-1}, mathrm{sr}^{-1}$ per flavor and reject a purely atmospheric explanation for the combined 3-year data at $5.7 sigma$. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year dataset, with a livetime of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000 TeV event is the highest-energy neutrino interaction ever observed.
We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultra-high energy cosmic-rays with ambient photons while propagating through intergalactic space. Exploiting IceCubes large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model independent quasi-differential 90% CL upper limit, which amounts to $E^2 phi_{ u_e + u_mu + u_tau} = 1.2 times 10^{-7}$ GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$ at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic ray sources such as the Fanaroff-Riley type II class of radio galaxies.
Different types of core-collapse supernovae (SNe) have been considered as candidate sources of high-energy cosmic neutrinos. Stripped-envelope SNe, including energetic events like hypernovae and super-luminous SNe, are of particular interest. They ma y harbor relativistic jets, which are capable of explaining the diversity among gamma-ray bursts (GRBs), low-luminosity GRBs, ultra-long GRBs, and broadline Type Ib/c SNe. Using the six-year IceCube data on high-energy starting events (HESEs), we perform an unbinned maximum likelihood analysis to search for spatial and temporal coincidences with 222 samples of SNe Ib/c. We find that the present data are consistent with the background only hypothesis, by which we place new upper constraints on the isotropic-equivalent energy of cosmic rays, ${mathcal E}_{rm cr}lesssim{10}^{52}~{rm erg}$, in the limit that all SNe are accompanied by on-axis jets. Our results demonstrate that not only upgoing muon neutrinos but also HESE data enable us to constrain the potential contribution of these SNe to the diffuse neutrino flux observed in IceCube. We also discuss implications for the next-generation neutrino detectors such as IceCube-Gen2.
Gamma-ray bursts (GRBs) are expected to provide a source of ultra high energy cosmic rays, accompanied with potentially detectable neutrinos at neutrino telescopes. Recently, IceCube has set an upper bound on this neutrino flux well below theoretical expectation. We investigate whether this mismatch between expectation and observation can be due to neutrino decay. We demosntrate the phenomenological consistency and theoretical plausibility of the neutrino decay hypothesis. A potential implication is the observability of majoron-emitting neutrinoless double beta decay.
Although they are best known for studying astrophysical neutrinos, neutrino telescopes like IceCube can study neutrino interactions, at energies far above those that are accessible at accelerators. In this writeup, I present two IceCube analyses of n eutrino interactions at energies far above 1 TeV. The first measures neutrino absorption in the Earth, and, from that determines the neutrino-nucleon cross-section at energies between 6.3 and 980 TeV. We find that the cross-sections is 1.30 $^{+0.21}_{-0.19}$ (stat.) $^{+0.39}_{-0.43}$ (syst.) times the Standard Model cross-section. We also present a measurement of neutrino inelasticity, using $ u_mu$ charged-current interactions that occur within IceCube. We have measured the average inelasticity at energies from 1 TeV to above 100 TeV, and found that it is in agreement with the Standard Model expectations. We have also performed a series of fits to this track sample and a matching cascade sample, to probe aspects of the astrophysical neutrino flux, particularly the flavor ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا