ﻻ يوجد ملخص باللغة العربية
The Navier-Stokes equations for compressible barotropic flow in the stationary three dimensional case are considered. It is assumed that a fluid occupies a bounded domain and satisfies the no-slip boundary condition. The existence of a weak solution under the assumption that the adiabatic exponent satisfies $gamma>1$ is proved. These results cover the cases of monoatomic, diatomic, and polyatomic gases.
In this paper, we investigate steady inviscid compressible flows with radial symmetry in an annulus. The major concerns are transonic flows with or without shocks. One of the main motivations is to elucidate the role played by the angular velocity in
We consider the compressible Navier--Stokes equation in a perturbed half-space with an outflow boundary condition as well as the supersonic condition. For a half-space, it has been known that a certain planar stationary solution exist and it is time-
We prove that for the two-dimensional steady complete compressible Euler system, with given uniform upcoming supersonic flows, the following three fundamental flow patterns (special solutions) in gas dynamics involving transonic shocks are all unique
We study the evolution of a reactive field advected by a one-dimensional compressible velocity field and subject to an ignition-type nonlinearity. In the limit of small molecular diffusivity the problem can be described by a spatially discretized sys
In a recent paper, Liu, Zhu and Wu (2015, {it J. Fluid Mech.} {bf 784}: 304) present a force theory for a body in a two-dimensional, viscous, compressible and steady flow. In this companion paper we do the same for three-dimensional flow. Using the f