ترغب بنشر مسار تعليمي؟ اضغط هنا

Green Bank Telescope observations of low column density HI around NGC 2997 and NGC 6946

75   0   0.0 ( 0 )
 نشر من قبل D. J. Pisano
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D.J. Pisano




اسأل ChatGPT حول البحث

Observations of ongoing HI accretion in nearby galaxies have only identified about 10% of the needed fuel to sustain star formation in these galaxies. Most of these observations have been conducted using interferometers and may have missed lower column density, diffuse, HI gas that may trace the missing 90% of gas. Such gas may represent the so-called cold flows predicted by current theories of galaxy formation to have never been heated above the virial temperature of the dark matter halo. As a first attempt to identify such cold flows around nearby galaxies and complete the census of HI down to N(HI)~10^18 cm^-2, I used the Robert C. Byrd Green Bank Telescope (GBT) to map the circumgalactic (r < 100-200 kpc) HI environment around NGC 2997 and NGC 6946. The resulting GBT observations cover a four square degree area around each galaxy with a 5-sigma detection limit of N(HI)~10^18 cm^-2 over a 20 km/s linewidth. This project complements absorption line studies, which are well-suited to the regime of lower N(HI). Around NGC 2997, the GBT HI data reveal an extended HI disk and all of its surrounding gas-rich satellite galaxies, but no filamentary features. Furthermore, the HI mass as measured with the GBT is only 7% higher than past interferometric measurements. After correcting for resolution differences, the HI extent of the galaxy is 23% larger at the N(HI)~1.2x10^18 cm^-2 level as measured by the GBT. On the other hand, the HI observations of NGC 6946 reveal a filamentary feature apparently connecting NGC 6946 with its nearest companions. This HI filament has N(HI)~10^18 cm^-2 and a FWHM of 55+-5 km/s and was invisible in past interferometer observations. The properties of this filament are broadly consistent with being a cold flow or debris from a past tidal interaction between NGC 6946 and its satellites.

قيم البحث

اقرأ أيضاً

Observed HI accretion around nearby galaxies can only account for a fraction of the gas supply needed to sustain the currently observed star formation rates. It is possible that additional accretion happens in the form of low column density cold flow s, as predicted by numerical simulations of galaxy formation. To contrain the presence and properties of such flows, we present deep HI observations obtained with the NRAO Green Bank Telescope of an area measuring 4 by 4 degrees around NGC 2403. These observations, with a 5 sigma detection limit of 2.4 x 10^18 cm^-2 over a 20 km/s linewidth, reveal the presence of a low-column density, extended cloud outside the main HI disk, about 17 (~16 kpc or ~2R25) to the NW of the center of the galaxy. The total HI mass of the cloud is 6.3 x 10^6 Msun, or 0.15 percent of the total HI mass of NGC 2403. The cloud is associated with an 8-kpc anomalous-velocity HI filament in the inner disk, previously observed in deep VLA observations by Fraternali et al. (2001, 2002). We discuss several scenarios for the origin of the cloud, and conclude that it is either accreting from the intergalactic medium, or is the result of a minor interaction with a neigbouring dwarf galaxy.
This paper introduces the data cubes from GHIGLS, deep Green Bank Telescope surveys of the 21-cm line emission of HI in 37 targeted fields at intermediate Galactic latitude. The GHIGLS fields together cover over 1000 square degrees at 9.55 spatial re solution. The HI spectra have an effective velocity resolution about 1.0 km/s and cover at least -450 < v < +250 km/s. GHIGLS highlights that even at intermediate Galactic latitude the interstellar medium is very complex. Spatial structure of the HI is quantified through power spectra of maps of the column density, NHI. For our featured representative field, centered on the North Ecliptic Pole, the scaling exponents in power-law representations of the power spectra of NHI maps for low, intermediate, and high velocity gas components (LVC, IVC, and HVC) are -2.86 +/- 0.04, -2.69 +/- 0.04, and -2.59 +/- 0.07, respectively. After Gaussian decomposition of the line profiles, NHI maps were also made corresponding to the narrow-line and broad-line components in the LVC range; for the narrow-line map the exponent is -1.9 +/- 0.1, reflecting more small scale structure in the cold neutral medium (CNM). There is evidence that filamentary structure in the HI CNM is oriented parallel to the Galactic magnetic field. The power spectrum analysis also offers insight into the various contributions to uncertainty in the data. The effect of 21-cm line opacity on the GHIGLS NHI maps is estimated.
139 - Rense Boomsma 2003
We are studying the properties of the holes and the high velocity gas in NGC 6946. Here we present some puzzling results.
286 - Rense Boomsma 2004
Multi-wavelength observations of nearby spiral galaxies have shown that neutral and ionized gas are present up to a few kpc from the disk and that star formation and supernovae probably play an important role in bringing gas into the halo. We have ob tained very sensitive HI observations of the face-on galaxy NGC 6946 and of the nearly edge-on starburst galaxy NGC 253. We find high velocity HI clouds in NGC 6946 and extra-planar gas with anomalous velocities in NGC 253. In both galaxies there seems to be a close connection between the star-forming disk and the halo HI. In the outer parts of NGC 6946 there is also evidence for recent gas accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا