ترغب بنشر مسار تعليمي؟ اضغط هنا

Multisymplectic effective General Boundary Field Theory

193   0   0.0 ( 0 )
 نشر من قبل Jos\\'e A. Zapata
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.



قيم البحث

اقرأ أيضاً

An explicit, geometric description of the first-class constraints and their Poisson brackets for gravity in the Palatini-Cartan formalism (in space-time dimension greater than three) is given. The corresponding Batalin- Fradkin-Vilkovisky (BFV) formulation is also developed.
114 - V. Caudrelier , A. Kundu 2014
We introduce the concept of multisymplectic formalism, familiar in covariant field theory, for the study of integrable defects in 1+1 classical field theory. The main idea is the coexistence of two Poisson brackets, one for each spacetime coordinate. The Poisson bracket corresponding to the time coordinate is the usual one describing the time evolution of the system. Taking the nonlinear Schrodinger (NLS) equation as an example, we introduce the new bracket associated to the space coordinate. We show that, in the absence of any defect, the two brackets yield completely equivalent Hamiltonian descriptions of the model. However, in the presence of a defect described by a frozen Backlund transformation, the advantage of using the new bracket becomes evident. It allows us to reinterpret the defect conditions as canonical transformations. As a consequence, we are also able to implement the method of the classical r matrix and to prove Liouville integrability of the system with such a defect. The use of the new Poisson bracket completely bypasses all the known problems associated with the presence of a defect in the discussion of Liouville integrability. A by-product of the approach is the reinterpretation of the defect Lagrangian used in the Lagrangian description of integrable defects as the generating function of the canonical transformation representing the defect conditions.
We construct the general effective field theory of gravity coupled to the Standard Model of particle physics, which we name GRSMEFT. Our method allows the systematic derivation of a non-redundant set of operators of arbitrary dimension with generic f ield content and gravity. We explicitly determine the pure gravity EFT up to dimension ten, the EFT of a shift-symmetric scalar coupled to gravity up to dimension eight, and the operator basis for the GRSMEFT up to dimension eight. Extensions to all orders are straightforward.
The quantum field theoretic description of general relativity is a modern approach to gravity where gravitational force is carried by spin-2 gravitons. In the classical limit of this theory, general relativity as described by the Einstein field equat ions is obtained. This limit, where classical general relativity is derived from quantum field theory is the topic of this thesis. The Schwarzschild-Tangherlini metric, which describes the gravitational field of an inertial point particle in arbitrary space-time dimensions, $D$, is analyzed. The metric is related to the three-point vertex function of a massive scalar interacting with a graviton to all orders in $G_N$, and the one-loop contribution to this amplitude is computed from which the $G_N^2$ contribution to the metric is derived. To understand the gauge-dependence of the metric, covariant gauge is used which introduces the parameter, $xi$, and the gauge-fixing function $G_sigma$. In the classical limit, the gauge-fixing function turns out to be the coordinate condition, $G_sigma=0$. As gauge-fixing function a novel family of gauges, which depends on an arbitrary parameter $alpha$ and includes both harmonic and de Donder gauge, is used. Feynman rules for the graviton field are derived and important results are the graviton propagator in covariant gauge and a general formula for the n-graviton vertex in terms of the Einstein tensor. The Feynman rules are used both in deriving the Schwarzschild-Tangherlini metric from amplitudes and in the computation of the one-loop correction to the metric. The one-loop correction to the metric is independent of the covariant gauge parameter, $xi$, and satisfies the gauge condition $G_sigma=0$ where $G_sigma$ is the family of gauges depending on $alpha$. In space-time $D=5$ a logarithm appears in position space and this phenomena is analyzed in terms of redundant gauge freedom.
A new variational principle for General Relativity, based on an action functional $I/(Phi, abla)/$ involving both the metric $Phi/$ and the connection $ abla/$ as independent, emph{unconstrained/} degrees of freedom is presented. The extremals of $I/ $ are seen to be pairs $/(Phi, abla)/$ in which $Phi/$ is a Ricci flat metric, and $ abla/$ is the associated Riemannian connection. An application to Kaluzas theory of interacting gravitational and electromagnetic fields is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا