ﻻ يوجد ملخص باللغة العربية
The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.
An explicit, geometric description of the first-class constraints and their Poisson brackets for gravity in the Palatini-Cartan formalism (in space-time dimension greater than three) is given. The corresponding Batalin- Fradkin-Vilkovisky (BFV) formulation is also developed.
We introduce the concept of multisymplectic formalism, familiar in covariant field theory, for the study of integrable defects in 1+1 classical field theory. The main idea is the coexistence of two Poisson brackets, one for each spacetime coordinate.
We construct the general effective field theory of gravity coupled to the Standard Model of particle physics, which we name GRSMEFT. Our method allows the systematic derivation of a non-redundant set of operators of arbitrary dimension with generic f
The quantum field theoretic description of general relativity is a modern approach to gravity where gravitational force is carried by spin-2 gravitons. In the classical limit of this theory, general relativity as described by the Einstein field equat
A new variational principle for General Relativity, based on an action functional $I/(Phi, abla)/$ involving both the metric $Phi/$ and the connection $ abla/$ as independent, emph{unconstrained/} degrees of freedom is presented. The extremals of $I/