ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamic Study of Nodal Structure and Multiband Superconductivity of KFe2As2

159   0   0.0 ( 0 )
 نشر من قبل Shunichiro Kittaka
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature, field, and field-orientation dependences of the electronic specific heat Ce of the ironpnictide superconductor KFe2As2 have been investigated. Thermodynamic evidence of the presence of line nodes is obtained from the T and $sqrt{H}$ linear dependences of Ce/T in the low-T and low-H region. Under a magnetic field rotated within the tetragonal ab plane, a fourfold oscillation is observed in Ce with a sign change at 0.08Tc. On the basis of the Doppler-shift analysis, the observed Ce minima in H // [100] at low T indicate the presence of line nodes somewhere on the Fermi surface where the Fermi velocity is parallel to the [100] direction; this is consistent with the octet-line-node scenario proposed recently by a photoemission experiment. In addition, the low-T Ce/T exhibits an unusual upturn on cooling at moderate fields only for H // ab, which is understood in terms of the strong Pauli paramagnetic effect on multiband superconductivity.



قيم البحث

اقرأ أيضاً

Superconductivity in the heavy-fermion compound CeCu2Si2 is a prototypical example of Cooper pairs formed by strongly correlated electrons. For more than 30 years, it has been believed to arise from nodal d-wave pairing mediated by a magnetic glue. H ere, we report a detailed study of the specific heat and magnetization at low temperatures for a high-quality single crystal. Unexpectedly, the specific-heat measurements exhibit exponential decay with a two-gap feature in its temperature dependence, along with a linear dependence as a function of magnetic field and the absence of oscillations in the field angle, reminiscent of multiband full-gap superconductivity. In addition, we find anomalous behavior at high fields, attributed to a strong Pauli paramagnetic effect. A low quasiparticle density of states at low energies with a multiband Fermi-surface topology would open a new door into electron pairing in CeCu2Si2.
222 - D. A. Zocco , K. Grube , F. Eilers 2013
The upper critical field Hc2(T) of the multiband superconductor KFe2As2 has been studied via low-temperature thermal expansion and magnetostriction measurements. We present compelling evidence for Pauli-limiting effects dominating Hc2(T) for H || a, as revealed by a crossover from second- to first-order phase transitions to the superconducting state in the magnetostriction measurements down to 50 mK. Corresponding features were absent for H || c. To our knowledge, this crossover constitutes the first confirmation of Pauli limiting of the Hc2(T) of a multiband superconductor. The results are supported by modeling Pauli limits for single-band and multiband cases.
141 - H. D. Yang , J.-Y. Lin , C. P. Sun 2004
Comprehensive low-temperature specific heat data C(T,H) of Na_0.35CoO2-1.3H_2O with temperature T down to 0.6 K and the magnetic field H up to 8 T are presented. For the normal state, the values of gamma_n=13.94 mJ/mol K2, and Debye temperature 362 K are reported. At zero field, a very sharp superconducting anomaly was observed at Tc=4.5 K with DeltaC/gamma_nTc=1.45. The superconducting volume fraction is estimated to be 47.4 % based on the consideration of entropy balance at Tc for the second-order superconducting phase transition. In the superconducting state, the electronic contribution C_es at H=0 can be well described by the model of the line nodal order parameter. In low H, gamma(H) H^1/2 which is also a manifestation of the line nodes. The behaviors of both Tc(H) and gamma(H) suggest the anisotropy of Hc2 or possible crossovers or transitions occurring in the mixed state.
We report a detailed low-temperature thermodynamic investigation (heat capacity and magnetization) of the superconducting state of KFe2As2 for H || c axis. Our measurements reveal that the properties of KFe2As2 are dominated by a relatively large nod eless energy gap (Delta?0 = 1.9 kBTc) which excludes dx2-y2 symmetry. We prove the existence of several additional extremely small gaps (?Delta0 < 1.0 kBTc) that have a profound impact on the low-temperature and low-field behavior, similar to MgB2, CeCoIn5 and PrOs4Sb12. The zero-field heat capacity is analyzed in a realistic self-consistent 4-band BCS model which qualitatively reproduces the recent laser ARPES results of Okazaki et al. (Science 337 (2012) 1314). Our results show that extremely low-temperature measurements, i.e. T < 0.1 K, will be required in order to resolve the question of the existence of line nodes in this compound.
The effective superconducting penetration depth measured in the vortex state of PrOs4Sb12 using transverse-field muon spin rotation (TF-muSR) exhibits an activated temperature dependence at low temperatures, consistent with a nonzero gap for quasipar ticle excitations. In contrast, Meissner-state radiofrequency (rf) inductive measurements of the penetration depth yield a T^2 temperature dependence, suggestive of point nodes in the gap. A scenario based on the recent discovery of extreme two-band superconductivity in PrOs4Sb12 is proposed to resolve this difference. In this picture a large difference between large- and small-gap coherence lengths renders the field distribution in the vortex state controlled mainly by supercurrents from a fully-gapped large-gap band. In zero field all bands contribute, yielding a stronger temperature dependence to the rf inductive measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا