ﻻ يوجد ملخص باللغة العربية
The transverse momentum anisotropy of the particles produced in heavy ion collisions is one of the most important experimental observable to investigate the collective behavior of the systems created in such collisions. Recent studies show that the complex nature of the system evolution, such as initial condition fluctuations and jets, may lead to important effects in the flow coefficients and, therefore, to misinterpretation of the results obtained. In this study, we used simulated events produced with a hydrodynamic model which allows inhomogeneous initial condition combined with proton-proton collisions produced with the Pythia event generator to create a final set of particles to be analyzed with the usual experimental flow calculation techniques. Although this simplified approach is somehow unrealistic, since it does not include the interaction of the jet with the medium, our results have shown a good agreement of the behavior of the elliptic flow coefficient as a function of the transverse momentum up to 6 GeV/c for Au+Au collisions at 200 GeV. Although each model alone is not able to describe the full range, the combination of both sets of particles as seen by the flow calculation techniques may be the key to explain the behavior observed in experimental data.
We calculate the leading corrections to jet momentum broadening and medium-induced branching that arise from the velocity of the moving medium at first order in opacity. These results advance our knowledge of jet quenching and demonstrate how it coup
We compute modifications to the jet spectrum in the presence of a dense medium. We show that in the large-$N_c$ approximation and at leading logarithmic accuracy the jet nuclear modification factor factorizes into a quenching factor associated to the
Energy and momentum loss of jets in heavy ion collisions can affect the fluid dynamic evolution of the medium. We determine realistic event-by-event averages and correlation functions of the local energy-momentum transfer from hard particles to the s
The pion structure in Minkowski space is described in terms of an analytic model of the Bethe-Salpeter amplitude combined with Euclidean Lattice QCD results for the running quark mass. In the present work, a pion model previously proposed, which allo
The event-plane method, which is widely used to analyze anisotropic flow in nucleus-nucleus collisions, is known to be biased by nonflow effects,especially at high $p_t$. Various methods (cumulants, Lee-Yang zeroes) have been proposed to eliminate no