ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Jets in the Flow Observables

121   0   0.0 ( 0 )
 نشر من قبل Rafael Derradi de Souza
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The transverse momentum anisotropy of the particles produced in heavy ion collisions is one of the most important experimental observable to investigate the collective behavior of the systems created in such collisions. Recent studies show that the complex nature of the system evolution, such as initial condition fluctuations and jets, may lead to important effects in the flow coefficients and, therefore, to misinterpretation of the results obtained. In this study, we used simulated events produced with a hydrodynamic model which allows inhomogeneous initial condition combined with proton-proton collisions produced with the Pythia event generator to create a final set of particles to be analyzed with the usual experimental flow calculation techniques. Although this simplified approach is somehow unrealistic, since it does not include the interaction of the jet with the medium, our results have shown a good agreement of the behavior of the elliptic flow coefficient as a function of the transverse momentum up to 6 GeV/c for Au+Au collisions at 200 GeV. Although each model alone is not able to describe the full range, the combination of both sets of particles as seen by the flow calculation techniques may be the key to explain the behavior observed in experimental data.



قيم البحث

اقرأ أيضاً

We calculate the leading corrections to jet momentum broadening and medium-induced branching that arise from the velocity of the moving medium at first order in opacity. These results advance our knowledge of jet quenching and demonstrate how it coup les to collective flow of the quark-gluon plasma in heavy-ion collisions and to the orbital motion of partons in cold nuclear matter in deep inelastic scattering at the electron-ion collider. We also compute the leading corrections to jet momentum broadening due to transverse gradients of temperature and density. We find that these effects lead to both anisotropic transverse momentum diffusion proportional to the medium velocity and anisotropic medium-induced radiation emitted preferentially in the direction of the flow. We isolate the relevant sub-eikonal corrections by working with jets composed of scalar particles with arbitrary color factors interacting with the medium by scalar QCD. Appropriate substitution of the color factors and light-front wave functions allow us to immediately apply the results to a range of processes including $q rightarrow q g$ branching in real QCD. The resulting general expressions can be directly coupled to hydrodynamic simulations on an event-by-event basis to study the correlations between jet quenching and the dynamics of various forms of nuclear matter.
We compute modifications to the jet spectrum in the presence of a dense medium. We show that in the large-$N_c$ approximation and at leading logarithmic accuracy the jet nuclear modification factor factorizes into a quenching factor associated to the total jet color charge and a Sudakov suppression factor which accounts for the energy loss of jet substructure fluctuations. This factor, called the jet collimator, implements the fact that subjets, that are not resolved by the medium, lose energy coherently as a single color charge, whereas resolved large angle fluctuations suffer more quenching. For comparison, we show that neglecting color coherence results in a stronger suppression of the jet nuclear modification factor.
Energy and momentum loss of jets in heavy ion collisions can affect the fluid dynamic evolution of the medium. We determine realistic event-by-event averages and correlation functions of the local energy-momentum transfer from hard particles to the s oft sector using the jet-quenching Monte-Carlo code JEWEL combined with a hydrodynamic model for the background. The expectation values for source terms due to jets in a typical (minimum bias) event affect the fluid dynamic evolution mainly by their momentum transfer. This leads to a small increase in flow. The presence of hard jets in the event constitutes only a minor correction.
The pion structure in Minkowski space is described in terms of an analytic model of the Bethe-Salpeter amplitude combined with Euclidean Lattice QCD results for the running quark mass. In the present work, a pion model previously proposed, which allo ws for a Nakanishi integral representation, is studied in order to verify the sensitivity of the pion electromagnetic form factor to small variations of the quark self-energy. In addition, we extend the previous work, providing the Nakanishi integral representation for the invariants associated with a decomposition of the pion Bethe-Salpeter amplitude.
The event-plane method, which is widely used to analyze anisotropic flow in nucleus-nucleus collisions, is known to be biased by nonflow effects,especially at high $p_t$. Various methods (cumulants, Lee-Yang zeroes) have been proposed to eliminate no nflow effects, but their implementation is tedious, which has limited their application so far. In this paper, we show that the Lee-Yang-zeroes method can be recast in a form similar to the standard event-plane analysis. Nonflow correlations are strongly suppressed by using the information from the length of the flow vector, in addition to the event-plane angle. This opens the way to improved analyses of elliptic flow and azimuthally-sensitive observables at RHIC and LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا