ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of a 30 cm-cube Electron-Tracking Compton Camera for the SMILE-II Experiment

176   0   0.0 ( 0 )
 نشر من قبل Yoshitaka Mizumura
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To explore the sub-MeV/MeV gamma-ray window for astronomy, we have developed the Electron-Tracking Compton Camera (ETCC), and carried out the first performance test at room condition using several gamma-ray sources in the sub-MeV energy band. Using a simple track analysis for a quick first test of the performance, the gamma-ray imaging capability was demonstrated by clear images and 5.3 degrees of angular resolution measure (ARM) measured at 662 keV. As the greatest impact of this work, a gamma-ray detection efficiency on the order of $10^{-4}$ was achieved at the sub-MeV gamma-ray band, which is one order of magnitude higher than our previous experiment. This angular resolution and detection efficiency enables us to detect the Crab Nebula at the 5 sigma level with several hours observation at balloon altitude in middle latitude. Furthermore, good consistency of efficiencies between this performance test and simulation including only physical processes has a large importance; it means we achieve nearly 100% detection of Compton recoil electrons. Thus, our estimation of enhancements by upgrades of the detector is more dependable. We are planning to confirm the imaging capability of the ETCC by observation of celestial objects in the SMILE-II (Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment II). The SMILE-II and following SMILE-III project will be an important key of sub-MeV/MeV gamma-ray astronomy.



قيم البحث

اقرأ أيضاً

For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gas eous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10$times$10$times$15 cm$^3$ TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm)$^{3}$ medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm)$^{3}$ ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from $sim$10% to $sim$100%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.
Electron tracking based Compton imaging is a key technique to improve the sensitivity of Compton cameras by measuring the initial direction of recoiled electrons. To realize this technique in semiconductor Compton cameras, we propose a new detector c oncept, Si-CMOS hybrid detector. It is a Si detector bump-bonded to a CMOS readout integrated circuit to obtain electron trajectory images. To acquire the energy and the event timing, signals from N-side are also read out in this concept. By using an ASIC for the N-side readout, the timing resolution of few us is achieved. In this paper, we present the results of two prototypes with 20 um pitch pixels. The images of the recoiled electron trajectories are obtained with them successfully. The energy resolutions (FWHM) are 4.1 keV (CMOS) and 1.4 keV (N-side) at 59.5 keV. In addition, we confirmed that the initial direction of the electron is determined using the reconstruction algorithm based on the graph theory approach. These results show that Si-CMOS hybrid detectors can be used for electron tracking based Compton imaging.
Electron-tracking Compton camera, which is a complete Compton camera with tracking Compton scattering electron by a gas micro time projection chamber, is expected to open up MeV gamma-ray astronomy. The technical challenge for achieving several degre es of the point spread function is the precise determination of the electron-recoil direction and the scattering position from track images. We attempted to reconstruct these parameters using convolutional neural networks. Two network models were designed to predict the recoil direction and the scattering position. These models marked 41$~$degrees of the angular resolution and 2.1$~$mm of the position resolution for 75$~$keV electron simulation data in Argon-based gas at 2$~$atm pressure. In addition, the point spread function of ETCC was improved to 15$~$degrees from 22$~$degrees for experimental data of 662$~$keV gamma-ray source. These performances greatly surpassed that using the traditional analysis.
NIKA2 is a dual-band millimetric continuum camera of 2900 Kinetic Inductance Detectors (KID), operating at $150$ and $260,rm{GHz}$, installed at the IRAM 30-meter telescope. We present the performance assessment of NIKA2 after one year of observation using a dedicated point-source calibration method, referred to as the emph{baseline} method. Using a large data set acquired between January 2017 and February 2018 that span the whole range of observing elevations and atmospheric conditions encountered at the IRAM 30-m telescope, we test the stability of the performance parameters. We report an instantaneous field of view (FOV) of 6.5 in diameter, filled with an average fraction of $84%$ and $90%$ of valid detectors at $150$ and $260,rm{GHz}$, respectively. The beam pattern is characterized by a FWHM of $17.6 pm 0.1$ and $11.1pm 0.2$, and a beam efficiency of $77% pm 2%$ and $55% pm 3%$ at $150$ and $260,rm{GHz}$, respectively. The rms calibration uncertainties are about $3%$ at $150,rm{GHz}$ and $6%$ at $260,rm{GHz}$. The absolute calibration uncertainties are of $5%$ and the systematic calibration uncertainties evaluated at the IRAM 30-m reference Winter observing conditions are below $1%$ in both channels. The noise equivalent flux density (NEFD) at $150$ and $260,rm{GHz}$ are of $9 pm 1, rm{mJy}cdot s^{1/2}$ and $30 pm 3, rm{mJy}cdot s^{1/2}$. This state-of-the-art performance confers NIKA2 with mapping speeds of $1388 pm 174$ and $111 pm 11 ,rm{arcmin}^2cdot rm{mJy}^{-2}cdot rm{h}^{-1}$ at $150$ and $260,rm{GHz}$. With these unique capabilities of fast dual-band mapping at high (better that 18) angular resolution, NIKA2 is providing an unprecedented view of the millimetre Universe.
80 - M. Kozai , H. Fuke , M. Yamada 2018
We have developed large-area lithium-drifted silicon (Si(Li)) detectors to meet the unique requirements of the General Antiparticle Spectrometer (GAPS) experiment. GAPS is an Antarctic balloon-borne mission scheduled for the first flight in late 2020 . The GAPS experiment aims to survey low-energy cosmic-ray antinuclei, particularly antideuterons, which are recognized as essentially background-free signals from dark matter annihilation or decay. The GAPS Si(Li) detector design is a thickness of 2.5 mm, diameter of 10 cm and 8 readout strips. The energy resolution of <4 keV (FWHM) for 20 to 100 keV X-rays at temperature of -35 to -45 C, far above the liquid nitrogen temperatures frequently used to achieve fine energy resolution, is required. We developed a high-quality Si crystal and Li-evaporation, diffusion and drift methods to form a uniform Li-drifted layer. Guard ring structure and optimal etching of the surface are confirmed to suppress the leakage current, which is a main source of noise. We found a thin un-drifted layer retained on the p-side effectively suppresses the leakage current. By these developments, we succeeded in developing the GAPS Si(Li) detector. As the ultimate GAPS instrument will require >1000 10-cm diameter Si(Li) detectors to achieve high sensitivity to rare antideuteron events, high-yield production is also a key factor for the success of the GAPS mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا