ﻻ يوجد ملخص باللغة العربية
We report on the search for neutrino-induced particle-showers, so-called cascades, in the IceCube-40 detector. The data for this search was collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV lead to the observation of 14 cascade-like events, again consistent with the prediction of 3.0 atmospheric neutrino and 7.7 atmospheric muon events. We hence set an upper limit of $E^2 Phi_{lim} leq 7.46times10^{-8},mathrm{GeV sr^{-1} s^{-1} cm^{-2}}$ (90% C.L.) on the diffuse flux from astrophysical neutrinos of all neutrino flavors, applicable to the energy range 25 TeV to 5 PeV, assuming an $E_{ u}^{-2}$ spectrum and a neutrino flavor ratio of 1:1:1 at the Earth. The third analysis utilized a larger and optimized sample of atmospheric muon background simulation, leading to a higher energy threshold of 100 TeV. Three events were found over a background prediction of 0.04 atmospheric muon events and 0.21 events from the flux of conventional and prompt atmospheric neutrinos. Including systematic errors this corresponds to a $2.7sigma$ excess with respect to the background-only hypothesis. Our observation of neutrino event candidates above 100 TeV complements IceCubes recently observed evidence for high-energy astrophysical neutrinos.
We report on the first search for extra-terrestrial neutrino-induced cascades in IceCube. The analyzed data were collected in the year 2007 when 22 detector strings were installed and operated. We will discuss the analysis methods used to reconstruct
We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies
DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCubes energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus
We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between May 15th 2012 and April 30th 2013. While the search methods employed in this analysis are similar to th
Recently the IceCube collaboration and 15 other collaborations reported the spatial and temporal coincidence between the neutrino event IceCube-170922A and the radio-TeV activity of the blazar TXS 0506+056. Their further analysis on 9.5 years of IceC