ترغب بنشر مسار تعليمي؟ اضغط هنا

A Nanoscale Shape Memory Oxide

103   0   0.0 ( 0 )
 نشر من قبل Jinxing Zhang Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stimulus-responsive shape memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechnical devices, materials with large mechanical strain particularly at nanoscale are therefore desired. Here we report on the discovery of a large shape memory effect in BiFeO3 at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, micro-cracking etc. have to be taken into consideration for real devices, the large shape memory effect in this oxide surpasses most alloys and therefore demonstrates itself as an extraordinary material for potential use in state-of-art nano-systems.



قيم البحث

اقرأ أيضاً

A negative-positive-negative switching behavior of magnetoresistance (MR) with temperature is observed in a ferromagnetic shape memory alloy Ni_1.75Mn_1.25Ga. In the austenitic phase between 300 and 120 K, MR is negative due to s-d scattering. Curiou sly, below 120K MR is positive, while at still lower temperatures in the martensitic phase, MR is negative again. The positive MR cannot be explained by Lorentz contribution and is related to a magnetic transition. Evidence for this is obtained from ab initio density functional theory, a decrease in magnetization and resistivity upturn at 120 K. Theory shows that a ferrimagnetic state with anti-ferromagnetic alignment between the local magnetic moments of the Mn atoms is the energetically favoured ground state. In the martensitic phase, there are two competing factors that govern the MR behavior: a dominant negative trend up to the saturation field due to the decrease of electron scattering at twin and domain boundaries; and a weaker positive trend due to the ferrimagnetic nature of the magnetic state. MR exhibits a hysteresis between heating and cooling that is related to the first order nature of the martensitic phase transition.
Functional oxides based resistive memories are recognized as potential candidate for the next-generation high density data storage and neuromorphic applications. Fundamental understanding of the compositional changes in the functional oxides is requi red to tune the resistive switching characteristics for enhanced memory performance. Herein, we present the micro/nano-structural and compositional changes induced in a resistive oxide memory during resistive switching. Oxygen deficient amorphous chromium doped strontium titanate (Cr:$a$-SrTiO$_{3-x}$) based resistance change memories are fabricated in a Ti/Cr:$a$-SrTiO$_{3-x}$ heterostructure and subjected to different biasing conditions to set memory states. Transmission electron microscope based cross-sectional analyses of the memory devices in different memory states shows that the micro/nano-structural changes in amorphous complex oxide and associated redox processes define the resistive switching behavior. These experimental results provide insights and supporting material for Ref. [1].
Elastic neutron-scattering, inelastic x-ray scattering, specific-heat, and pressure-dependent electrical transport measurements have been made on single crystals of AuZn and Au_{0.52}Zn_{0.48} above and below their martensitic transition temperatures (T_M=64K and 45K, respectively). In each composition, elastic neutron scattering detects new commensurate Bragg peaks (modulation) appearing at Q = (1.33,0.67,0) at temperatures corresponding to each samples T_M. Although the new Bragg peaks appear in a discontinuous manner in the Au_{0.52}Zn_{0.48} sample, they appear in a continuous manner in AuZn. Surprising us, the temperature dependence of the AuZn Bragg peak intensity and the specific-heat jump near the transition temperature are in favorable accord with a mean-field approximation. A Landau-theory-based fit to the pressure dependence of the transition temperature suggests the presence of a critical endpoint in the AuZn phase diagram located at T_M*=2.7K and p*=3.1GPa, with a quantum saturation temperature theta_s=48.3 +/- 3.7K.
Direct observations using scanning transmission electron microscopy unveil an intriguing interfacial bi-layer that enables epitaxial growth of a strain-free, monoclinic, bronze-phase VO2(B) thin film on a perovskite SrTiO3 (STO) substrate. We observe an ultrathin (2-3 unit cells) interlayer best described as highly strained VO2(B) nanodomains combined with an extra (Ti,V)O2 layer on the TiO2 terminated STO (001) surface. By forming a fully coherent interface with the STO substrate and a semi-coherent interface with the strain-free epitaxial VO2(B) film above, the interfacial bi-layer enables the epitaxial connection of the two materials despite their large symmetry and lattice mismatch.
We study the branching of twins appearing in shape memory alloys at the interface between austenite and martensite. In the framework of three-dimensional non-linear elasticity theory, we propose an explicit, low-energy construction of the branched mi crostructure, generally applicable to any shape memory material without restrictions on the symmetry class of martensite or on the geometric parameters of the interface. We show that the suggested construction follows the expected energy scaling law, i.e., that (for the surface energy of the twins being sufficiently small) the branching leads to energy reduction. Furthermore, the construction can be modified to capture different features of experimentally observed microstructures without violating this scaling law. By using a numerical procedure, we demonstrate that the proposed construction is able to predict realistically the twin width and the number of branching generations in a Cu-Al-Ni single crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا