ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards an optical potential for rare-earths through coupled channels

237   0   0.0 ( 0 )
 نشر من قبل Gustavo Nobre
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations, defined by nuclear deformations. Proper treatment of such excitations is often essential to the accurate description of reaction experimental data. Previous works have applied different models to specific nuclei with the purpose of determining angular-integrated cross sections. In this work, we present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-earth region. This specific subset of the nuclide chart was chosen precisely because of a clear static deformation pattern. We analyze the convergence of the coupled-channel calculations regarding the number of states being explicitly coupled. Inspired by the work done by Dietrich emph{et al.}, a model for deforming the spherical Koning-Delaroche optical potential as function of quadrupole and hexadecupole deformations is also proposed. We demonstrate that the obtained results of calculations for total, elastic and inelastic cross sections, as well as elastic and inelastic angular distributions correspond to a remarkably good agreement with experimental data for scattering energies above around a few MeV.



قيم البحث

اقرأ أيضاً

We present an outline of an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-ea rth region. This specific subset of the nuclide chart was chosen precisely because of a clear static deformation pattern. We analyze the convergence of the coupled-channel calculations regarding the number of states being explicitly coupled. A model for deforming the spherical Koning-Delaroche optical potential as function of quadrupole and hexadecupole deformations is also proposed, inspired by previous works. We demonstrate that the obtained results of calculations for total, elastic, inelastic, and capture cross sections, as well as elastic and inelastic angular distributions are in remarkably good agreement with experimental data for scattering energies around a few MeV.
Inspired by the recent work by Dietrich et al., substantiating validity of the adiabatic assumption in coupled-channel calculations, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coup led-channel calculations on statically deformed nuclei. The generalization consists in adding the coupling of the ground state rotational band, deforming the potential by introducing appropriate quadrupole and hexadecupole deformation and correcting the OMP radius to preserve volume integral of the spherical OMP. We choose isotopes of three rare-earth elements (W, Ho, Gd), which are known to be nearly perfect rotors, to perform a consistent test of our conjecture on integrated cross sections as well as on angular distributions for elastic and inelastic neutron scattering. When doing this we employ the well-established Koning-Delaroche global spherical potential and experimentally determined deformations without any adjustments. We observe a dramatically improved agreement with experimental data compared to spherical optical model calculations. The effect of changing the OMP radius to preserve volume integral is moderate but visibly improves agreement at lower incident energies. We find that seven collective states need to be considered for the coupled-channel calculations to converge. Our results for total, elastic, inelastic, and capture cross sections, as well as elastic and inelastic angular distributions are in remarkable agreement with experimental data. This result confirms that the adiabatic assumption holds and can extend applicability of the global spherical OMP to rotational nuclei in the rare-earth region, essentially without any free parameter. Thus, quite reliable coupled-channel calculations can be performed on such nuclei even when the experimental data, and consequently a specific coupled-channel potential, are not available.
The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate desc ription of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, we have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. These results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.
The electromagnetic pion production reactions are investigated within the dynamical coupled-channels model developed in {bf Physics Reports, 439, 193 (2007)}. The meson-baryon channels included in this study are $gamma N$, $pi N$, $eta N$, and the $p iDelta$, $rho N$ and $sigma N$ resonant components of the $pipi N$ channel. With the hadronic parameters of the model determined in a recent study of $pi N$ scattering, we show that the pion photoproduction data up to the second resonance region can be described to a very large extent by only adjusting the bare $gamma N to N^*$ helicity amplitudes, while the non-resonant electromagnetic couplings are taken from previous works. It is found that the coupled-channels effects can contribute about 10 - 20 % of the production cross sections in the $Delta$ (1232) resonance region, and can drastically change the magnitude and shape of the cross sections in the second resonance region. The importance of the off-shell effects in a dynamical approach is also demonstrated. The meson cloud effects as well as the coupled-channels contributions to the $gamma N to N^*$ form factors are found to be mainly in the low $Q^2$ region. For the magnetic M1 $gamma N to Delta$ (1232) form factor, the results are close to that of the Sato-Lee Model. Necessary improvements to the model and future developments are discussed.
Background: Near-barrier fusion can be strongly affected by the coupling between relative motion and internal degrees of freedom of the collision partners. The time-dependent Hartree-Fock (TDHF) theory and the coupled-channels (CC) method are standar d approaches to investigate this aspect of fusion dynamics. However, both approaches present limitations, such as a lack of tunnelling of the many-body wave function in the former and a need for external parameters to describe the nucleus-nucleus potential and the couplings in the latter. Method: A method combining both approaches is proposed to overcome these limitations. CC calculations are performed using two types of inputs from Hartree-Fock (HF) theory: the nucleus-nucleus potential calculated with the frozen HF method, and the properties of low-lying vibrational states and giant resonances computed from the TDHF linear response. Results: The effect of the couplings to vibrational modes is studied in the $^{40}$Ca$+^{40}$Ca and $^{56}$Ni$+^{56}$Ni systems. This work demonstrates that the main effect of these couplings is a lowering of the barrier, in good agreement with the fusion thresholds predicted by TDHF calculations. Conclusions: As the only phenomenological inputs are the choice of the internal states of the nuclei and the parameters of the energy density functional used in the HF and TDHF calculations, the method presented in this work has a broad range of possible applications, including studies of alternative couplings or reactions involving exotic nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا