ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs Production in Two-Photon Process and Transition Form Factor

69   0   0.0 ( 0 )
 نشر من قبل Norihisa Watanabe
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Higgs production in the two-photon fusion process is investigated where one of the photons is off-shell while the other one is on-shell. This process is realized in either electron-positron collision or electron-photon collision where the scattered electron or positron is detected (single tagging) and described by the transition form factor. We calculate the contributions to the transition form factor of the Higgs boson coming from top-quark loops and W-boson loops. We then study the $Q^2$ dependence of each contribution to the total transition form factor and also of the differential cross section for the Higgs production.

قيم البحث

اقرأ أيضاً

110 - S. Noguera , S. Scopetta 2011
The eta-photon transition form factor is evaluated in a formalism based on a phenomenological description at low values of the photon virtuality, and a QCD-based description at high photon virtualities, matching at a scale $Q_{0}^{2}$. The high photo n virtuality description makes use of a Distribution Amplitude calculated in the Nambu-Jona-Lasinio model with Pauli-Villars regularization at the matching scale $Q_{0}^{2}$, and QCD evolution from $Q_{0}^{2}$ to higher values of $Q^{2}$. A good description of the available data is obtained. The analysis indicates that the recent data from the BaBar collaboration on pion and eta transition form factor can be well reproduced, if a small contribution of twist three at the matching scale $Q_{0}^{2}$ is included.
We reconsider QCD factorization for the leading power contribution to the $gamma^{ast} gamma to pi^0$ form factor $F_{gamma^{ast} gamma to pi^0} (Q^2)$ at one loop using the evanescent operator approach, and demonstrate the equivalence of the resulti ng factorization formulae derived with distinct prescriptions of $gamma_5$ in dimensional regularization. Applying the light-cone QCD sum rules (LCSRs) with photon distribution amplitudes (DAs) we further compute the subleading power contribution to the pion-photon form factor induced by the hadronic component of the real photon at the next-to-leading-order in ${cal O}(alpha_s)$, with both naive dimensional regularization and t Hooft-Veltman schemes of $gamma_5$. Confronting our theoretical predictions of $F_{gamma^{ast} gamma to pi^0} (Q^2)$ with the experimental measurements from the BaBar and the Belle Collaborations implies that a reasonable agreement can be achieved without introducing an exotic end-point behaviour for the twist-2 pion DA.
We study the fusion processes $W^-W^+to tbar t$ and $ZZto tbar t$ observable at a future $e^-e^+$ collider and we discuss their sensitivity to an $Htt$ form factor which may be due to compositeness, in particular when the $H$ and the top quark have c ommon constituents. We make an amplitude analysis and illustrate which helicity amplitudes and cross sections for specific final $tbar t$ polarizations are especially sensitive to this form factor.
We calculate the cross section of Higgs boson pair production at a photon collider in the two Higgs doublet model. We focus on the scenario in which the lightest CP even Higgs boson ($h$) has the standard model like couplings to the gauge bosons. We take into account the one-loop correction to the $hhh$ coupling as well as additional one-loop diagrams due to charged Higgs bosons to the $gammagammato hh$ helicity amplitudes. It is found that the full cross section can be enhanced by both these effects to a considerable level. We discuss the impact of these corrections on the $hhh$ coupling measurement at the photon collider.
It has been pointed out that the recent BaBar data on the pi gamma^* -> gamma transition form factor F_{pi gamma}(Q^2) at low (high) momentum transfer squared Q^2 indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictor y observations can be reconciled in the k_T factorization theorem: the increase of the measured Q^2F_{pi gamma}(Q^2) for Q^2 > 10 GeV^2 is explained by convoluting a k_T dependent hard kernel with a flat pion distribution amplitude, k_T being a parton transverse momentum. The low Q^2 data are accommodated by including the resummation of alpha_s ln^2x, x being a parton momentum fraction, which provides a stronger suppression at the endpoints of x. The next-to-leading-order correction to the pion transition form factor is found to be less than 20% in the considered range of Q^2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا