ﻻ يوجد ملخص باللغة العربية
We reanalyse the work of Cleuren et al., Phys. Rev. Lett. 109, 248902 (2012), in the light of Jiang et al. Phys. Rev. B 85, 075412 (2012). The condition for cooling enforces its rate to be exponentially small at low temperatures. Thus, the difficulty with the dynamic version of the third law found by Levy et al., Phys. Rev. Lett. 109, 248901 (2012) and Allahverdyan et al., Phys. Rev. Lett. 109, 248903 (2012) is resolved.
We demonstrate the possiblity to cool nanoelectronic systems in nonequilibrium situations by increasing the temperature of the environment. Such cooling by heating is possible for a variety of experimental conditions where the relevant transport-indu
We report a heat dynamics analysis of the electrocaloric effect (ECE) in commercial multilayer capacitors based on BaTiO3 dielectric, a promising candidate for applications as a solid state cooling device. Direct measurements of the time evolution of
We study the non-equilibrium regime of the Kondo effect in a quantum dot laterally coupled to a narrow wire. We observe a split Kondo resonance when a finite bias voltage is imposed across the wire. The splitting is attributed to the creation of a do
Heat management and refrigeration are key concepts for nanoscale devices operating at cryogenic temperatures. The design of an on-chip mesoscopic refrigerator that works thanks to the input heat is presented, thus realizing a solid state implementati
We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons direct