ﻻ يوجد ملخص باللغة العربية
The resonance, a collective boson mode, was usually thought to be a possible glue of superconductivity. We argue that it is rather a natural product of the emph{d}-wave pairing and the Fermi surface topology. A universal scaling $E_{res}/2Delta ^{H}_{S}sim 1.0$ ($Delta_{S}^{H}$ the magnitude of superconducting gap at hot spot) is proposed for cuprates, irrespective of the hole-/electron-doping, low-/high-energy resonance, monotonic/nonmonotonic emph{d}-wave paring, and the parameters selected. We reveal that there may exist two resonance peaks in the electron-doped cuprates. The low- and high- energy resonance, originated from the contributions of the different intra-band component, is intimately associated with the Fermi surface topology. By analyzing the data of inelastic neutron scattering, we conclude the nonmonotonic emph{d}-wave superconducting pairing symmetry in the electron-doped cuprates, which is still an open question
We discuss evolution of the Fermi surface (FS) topology with doping in electron doped cuprates within the framework of a one-band Hubbard Hamiltonian, where antiferromagnetism and superconductivity are assumed to coexist in a uniform phase. In the li
Here we report the first results of the high-pressure Hall coefficient (RH) measurements, combined with the high-pressure resistance measurements, at different temperatures on the putative topological superconductor FeTe0.55Se0.45. We find the intima
The pressure dependence of the structural ($T_s$), antiferromagnetic ($T_m$), and superconducting ($T_c$) transition temperatures in FeSe is investigated on the basis of the 16-band $d$-$p$ model. At ambient pressure, a shallow hole pocket disappears
We present a soft x-ray angle-resolved photoemission spectroscopy study of the overdoped high-temperature superconductors La$_{2-x}$Sr$_x$CuO$_4$ and La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$. In-plane and out-of-plane components of the Fermi surface are m
We introduce a simple but powerful zero temperature Stoner model to explain the unusual phase diagram of the ferromagnetic superconductor, UGe2. Triplet superconductivity is driven in the ferromagnetic phase by tuning the majority spin Fermi level th