ترغب بنشر مسار تعليمي؟ اضغط هنا

Computer-Generated Holographic Gratings in Soft Matter

45   0   0.0 ( 0 )
 نشر من قبل Gianluigi Zito
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Standard multiple-beam holography has been largely used to produce gratings in polymer-liquid crystal composites, like POLICRYPS, H-PDLC gratings and POLIPHEM [1]. In this work we present a different approach to liquid crystalpolymeric grating production, based on the Computer-Generated Holography (CGH). The great advantage of using CGH is that interferometer-based schemes are no longer necessary, avoiding problems related to long term stability of the interference pattern and multi-beam complex optical setup. Moreover, the CGH technique allows a wider choice of pattern designs. In this preliminary work, we obtained promising results, as for instance the patterning of a square-wave refractive index modulation of a LCpolymeric composite, a pattern which is not achievable with standard two-beam holography.


قيم البحث

اقرأ أيضاً

85 - Y. Tomita , A. Kageyama , Y. Iso 2020
We demonstrate the use of nanodiamond in constructing holographic nanoparticle-polymer composite transmission gratings with large saturated refractive index modulation amplitudes at both optical and slow-neutron wavelengths, resulting in efficient co ntrol of light and slow-neutron beams. Nanodiamond possesses a high refractive index at optical wavelengths and large coherent and small incoherent scattering cross sections with low absorption at slow-neutron wavelengths. We describe the synthesis of nanodiamond, the preparation of photopolymerizable nanodiamond-polymer composite films, the construction of transmission gratings in nanodiamond-polymer composite films and light optical diffraction experiments. Results of slow-neutron diffraction from such gratings are also presented.
We discuss the applicability of holographically recorded gratings in photopolymers and holographic polymer-dispersed liquid crystals as neutron optical elements. An experimental investigation of their properties for light and neutrons with different grating spacings and grating thicknesses is performed. The angular dependencies of the diffraction efficiencies for those gratings are interpreted in terms of a rigourous coupled wave analysis. Starting from the obtained results we work out the lines for the production of an optimised neutron optical diffraction grating, i.e., high diffraction efficiency in the Bragg diffraction regime with moderate angular selectivity.
We report a calculation reduction method for color computer-generated holograms (CGHs) using color space conversion. Color CGHs are generally calculated on RGB space. In this paper, we calculate color CGHs in other color spaces: for example, YCbCr co lor space. In YCbCr color space, a RGB image is converted to the luminance component (Y), blue-difference chroma (Cb) and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well-recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space.
We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function which incorporates the in ner product of the light field with a chosen target field within a defined measure region is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of $F=0.999997$ is achieved for a pattern resembling an $LG^{0}_{1}$ mode with a calculated light-usage efficiency of $41.5%$. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with $F = 0.97$ and $7.8%$ light efficiency.
In the present work we discuss a possibility to build an instrument with two operation modes - spectral and imaging ones. The key element of such instrument is a dispersive and filtering unit consisting of two narrowband volume-phase holographic grat ings. Each of them provides high diffraction efficiency in a relatively narrow spectral range of a few tens of nanometers. Besides, the position of this working band is highly dependent on the angle of incidence. So we propose to use a couple of such gratings to implement the two operational modes. The gratings are mounted in a collimated beam one after another. In the spectroscopic mode the gratings are turned on such angle that the diffraction efficiency curves coincide, thus the beams diffracted on the first grating are diffracted twice on the second one and a high-dispersion spectrum in a narrow range is formed. If the collimating and camera lenses are corrected for a wide field it is possible to use a long slit and register the spectra from its different points separately. In the imaging mode the gratings are turned to such angle that the efficiency curves intersect in a very narrow wavelength range. So the beams diffracted on the first grating are filtered out by the second one except of the spectral component, which forms the image. In this case the instrument works without slit diaphragm on the entrance. We provide an example design to illustrate the proposed concept. This optical scheme works in the region around 656 nm with F/# of 6.3. In the spectroscopic mode it provides a spectrum for the region from 641 to 671 nm with reciprocal linear dispersion of 1.4 nm/mm and the spectral resolving power higher than 14000. In the imaging mode it covers linear 12mm x 12mm field of view with spatial resolution of 15-30 lines/mm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا