ترغب بنشر مسار تعليمي؟ اضغط هنا

SDC13 infrared dark clouds: Longitudinally collapsing filaments?

194   0   0.0 ( 0 )
 نشر من قبل Nicolas Peretto
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Formation of stars is now believed to be tightly linked to the dynamical evolution of interstellar filaments in which they form. In this paper we analyze the density structure and kinematics of a small network of infrared dark filaments, SDC13, observed in both dust continuum and molecular line emission with the IRAM 30m telescope. These observations reveal the presence of 18 compact sources amongst which the two most massive, MM1 and MM2, are located at the intersection point of the parsec-long filaments. The dense gas velocity and velocity dispersion observed along these filaments show smooth, strongly correlated, gradients. We discuss the origin of the SDC13 velocity field in the context of filament longitudinal collapse. We show that the collapse timescale of the SDC13 filaments (from 1 Myr to 4 Myr depending on the model parameters) is consistent with the presence of Class I sources in them, and argue that, on top of bringing more material to the centre of the system, collapse could generate additional kinematic support against local fragmentation, helping the formation of starless super-Jeans cores.



قيم البحث

اقرأ أيضاً

384 - S. Feng , H. Beuther , Q. Zhang 2016
The dense, cold regions where high-mass stars form are poorly characterised, yet they represent an ideal opportunity to learn more about the initial conditions of high-mass star formation (HMSF), since high-mass starless cores (HMSCs) lack the violen t feedback seen at later evolutionary stages. We present continuum maps obtained from the Submillimeter Array (SMA) interferometry at 1.1 mm for four infrared dark clouds (IRDCs, G28.34S, IRDC 18530, IRDC 18306, and IRDC 18308). We also present 1 mm/3 mm line surveys using IRAM 30 m single-dish observations. Our results are: (1) At a spatial resolution of 10^4 AU, the 1.1 mm SMA observations resolve each source into several fragments. The mass of each fragment is on average >10 Msun, which exceeds the predicted thermal Jeans mass of the whole clump by a factor of up to 30, indicating that thermal pressure does not dominate the fragmentation process. Our measured velocity dispersions in the 30 m lines imply that non-thermal motions provides the extra support against gravity in the fragments. (2) Both non-detection of high-J transitions and the hyperfine multiplet fit of N2H+(1-0), C2H(1-0), HCN(1-0), and H13CN(1-0) indicate that our sources are cold and young. However, obvious detection of SiO and the asymmetric line profile of HCO+(1-0) in G28.34S indicate a potential protostellar object and probable infall motion. (3) With a large number of N-bearing species, the existence of carbon rings and molecular ions, and the anti-correlated spatial distributions between N2H+/NH2D and CO, our large-scale high-mass clumps exhibit similar chemical features as small-scale low-mass prestellar objects. This study of a small sample of IRDCs illustrates that thermal Jeans instability alone cannot explain the fragmentation of the clump into cold (~15 K), dense (>10^5 cm-3) cores and that these IRDCs are not completely quiescent.
Cosmic rays (CR) play an important role in dense molecular cores, affecting their thermal and dynamical evolution and initiating the chemistry. Several studies have shown that the formation of protostellar discs in collapsing clouds is severely hampe red by the braking torque exerted by the entrained magnetic field on the infalling gas, as long as the field remains frozen to the gas. We examine the possibility that the concentration and twisting of the field lines in the inner region of collapse can produce a significant reduction of the ionisation fraction. To check whether the CR ionisation rate (CRir) can fall below the critical value required to maintain good coupling, we first study the propagation of CRs in a model of a static magnetised cloud varying the relative strength of the toroidal/poloidal components and the mass-to-flux ratio. We then follow the path of CRs using realistic magnetic field configurations generated by numerical simulations of a rotating collapsing core. We find that an increment of the toroidal component of the magnetic field, or, in general, a more twisted configuration of the field lines, results in a decrease in the CR flux. This is mainly due to the magnetic mirroring effect that is stronger where larger variations in the field direction are present. In particular, we find a decrease of the CRir below 10^-18 s-1 in the central 300-400 AU, where density is higher than about 10^9 cm-3. This very low value of the CRir is attained in the cases of intermediate and low magnetisation (mass-to-flux ratio lambda=5 and 17, respectively) and for toroidal fields larger than about 40% of the total field. Magnetic field effects can significantly reduce the ionisation fraction in collapsing clouds. We provide a handy fitting formula to compute approximately the attenuation of the CRir in a molecular cloud as a function of the density and the magnetic configuration.
We discuss the mechanism of cluster formation in hierarchically collapsing molecular clouds. Recent evidence, both observational and numerical, suggests that molecular clouds (MCs) may be undergoing global, hierarchical gravitational collapse. The hi erarchical regime consists of small-scale collapses within larger-scale ones. The latter implies that the star formation rate increases systematically during the early stages of evolution, and occurs via filamentary flows onto hubs of higher density, mass, and velocity dispersion, and culminates a few Myr after than the small-scale collapses have started to form stars. In turn, the small-scale collapses occur in clumps embedded in the filaments, and are themselves falling into the larger potential well of the still-ongoing large-scale collapse. The stars formed in the early, small-scale collapses share the infall motion of their parent clumps towards the larger potential trough, so that the filaments feed both gaseous and stellar material to the hubs. This leads to the presence of older stars in a region where new protostars are still forming, to a scale-free or fractal structure of the clusters, in which each unit is composed of smaller-scale ones, and to the eventual merging of the subunits, explaining the observed structural features of open clusters.
We discuss the mechanism of cluster formation in a numerical simulation of a molecular cloud (MC) undergoing global hierarchical collapse (GHC). The global nature of the collapse implies that the SFR increases over time. The hierarchical nature of th e collapse consists of small-scale collapses within larger-scale ones. The large-scale collapses culminate a few Myr later than the small-scale ones and consist of filamentary flows that accrete onto massive central clumps. The small-scale collapses form clumps that are embedded in the filaments and falling onto the large-scale collapse centers. The stars formed in the early, small-scale collapses share the infall motion of their parent clumps. Thus, the filaments feed both gaseous and stellar material to the massive central clump. This leads to the presence of a few older stars in a region where new protostars are forming, and also to a self-similar structure, in which each unit is composed of smaller-scale sub-units that approach each other and may merge. Because the older stars formed in the filaments share the infall motion of the gas onto the central clump, they tend to have larger velocities and to be distributed over larger areas than the younger stars formed in the central clump. Finally, interpreting the IMF at face-value as a probability distribution implies that massive stars only form once the {it local} SFR is large enough to sample the IMF up to high masses. In combination with the increase of the SFR, this implies that massive stars tend to appear late in the evolution of the MC, and only in the central massive clumps. We discuss the correspondence of these features with observed properties of young stellar clusters, finding very good qualitative agreement, thus providing support to the scenario of global, hierarchical collapse of MCs, while explaining the origin of the observed cluster structure.
High-mass Stars are cosmic engines known to dominate the energetics in the Milky Way and other galaxies. However, their formation is still not well understood. Massive, cold, dense clouds, often appearing as Infrared Dark Clouds (IRDCs), are the nurs eries of massive stars. No measurements of magnetic fields in IRDCs in a state prior to the onset of high-mass star formation (HMSF) have previously been available, and prevailing HMSF theories do not consider strong magnetic fields. Here, we report observations of magnetic fields in two of the most massive IRDCs in the Milky Way. We show that IRDCs G11.11-0.12 and G0.253+0.016 are strongly magnetized and that the strong magnetic field is as important as turbulence and gravity for HMSF. The main dense filament in G11.11-0.12 is perpendicular to the magnetic field, while the lower density filament merging onto the main filament is parallel to the magnetic field. The implied magnetic field is strong enough to suppress fragmentation sufficiently to allow HMSF. Other mechanisms reducing fragmentation, such as the entrapment of heating from young stars via high mass surface densities, are not required to facilitate HMSF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا