ﻻ يوجد ملخص باللغة العربية
We use numerical simulations based on an extended Lugiato-Lefever equation (LLE) to investigate the stability properties of Kerr frequency combs generated in microresonators. In particular, we show that an ensemble average calculated over sequences of output fields separated by a fixed number of resonator roundtrips allows the coherence of Kerr combs to be quantified in terms of the complex-degree of first-order coherence. We identify different regimes of comb coherence, linked to the solutions of the LLE. Our approach provides a practical and unambiguous way of assessing the stability of Kerr combs that is directly connected to an accessible experimental quantity.
Kerr optical frequency combs with multi-gigahertz spacing have previously been demonstrated in chip-scale microresonators, with potential applications in coherent communication, spectroscopy, arbitrary waveform generation, and radio frequency photoni
Using the known solutions of the Lugiato-Lefever equation, we derive universal trends of Kerr frequency combs. In particular, normalized properties of temporal cavity soliton solutions lead us to a simple analytic estimate of the maximum attainable b
Recent experiments have demonstrated the generation of widely-spaced parametric sidebands that can evolve into clustered optical frequency combs in Kerr microresonators. Here we describe the physics that underpins the formation of such clustered comb
Using numerical simulations of an extended Lugiato-Lefever equation, we analyze the stability and nonlinear dynamics of Kerr frequency combs generated in microresonators and fiber resonators taking into account third-order dispersion effects. We show
Microresonator-based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase-locked microcombs have generally had low conversion